
1 Power Series

1.1 General Series

We first recall some facts about series from Calculus.

A series, s =
∑∞

n=0 un, is defined as a limit, s = limn→∞ sn, where sn is the n-th partial sum,
sn = u0 + · · · + un. The series converges if the limit s exists and |s| < ∞; otherwise it diverges.
We usually write simply

∑
un to denote a series with the starting limit implied by context and the

upper limit ∞.

A series
∑

un converges absolutely if
∑
|un| converges. Recall that absolute convergence implies

ordinary convergence. The terms of an absolutely convergent series may be rearranged in any
manner without altering the sum. In contrast to this, the terms of a conditionally convergent
series—convergent, but not absolutely convergent—may be rearranged to sum to any given value.

Convergence Tests

Simple Divergence Test If the terms un do not approach 0, then the series
∑

un diverges.
(Equivalently, if

∑
un converges then un → 0.)

Comparison Test Suppose 0 ≤ un ≤ wn, ∀n ≥ N . Then
∑

wn converges ⇒
∑

un converges;∑
un diverges ⇒

∑
wn diverges.

Root/Ratio Tests Assume 0 ≤ un and let L = limn→∞ un+1/un or L = limn→∞ n
√

un. If L < 1
then the series

∑
un converges and if L > 1, the series diverges.

Geometric Series
∑∞

n=k un converges to uk/(1− u) if |u| < 1 and diverges if |u| ≥ 1.

The convergence of geometric series follows from the algebraic identity

1 + u + u2 + · · ·+ un =
1

1− u
− un+1

1− u

that gives an explicit formula for the n-th partial sum. The Root and Ratio Tests are derived from
the geometric series and the Comparison Test.

1.2 Convergence of Power Series

Definition 1 A power series is a series of the form

∞∑
n=0

an(x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + . . .
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To keep the notation simple we shall assume without loss of generality that x0 = 0.

If
∑∞

n=0 anxn converges for one number, say b, then it converges absolutely and uniformly on [−r, r]
for any 0 ≤ r < |b|.

Since
∑

anbn converges, the terms must approach 0, and hence ∃M such that |anbn| ≤ M , ∀n.
Then

|anxn| = |anbn||xn/bn| ≤ M |x/b|n

If |x| ≤ r < |b|, then |x/b| ≤ r/|b| < 1 and
∑
|anxn| is dominated by a convergent geometric series,∑

M(r/|b|)n. Note that the convergence depends only on r/|b| < 1 and not on any particular value
of x. Therefore,

∑
anxn converges absolutely and uniformly on [−r, r].

This proposition shows if a power series converges, it must converge on a symmetric interval
(−R,R). The the largest such R is given a name.

Definition 2 R is the radius of convergence of
∑

anxn if the series converges for |x| < R and
diverges for |x| > R.

In this definition we allow R = 0 (the series converges only for x = 0) or R = ∞ (the series
converges for all x). The series may or may not converge at the endpoints ±R. The value of R can
often be conveniently found using the Root or Ratio Tests.

Examples: Let α > 0.

1) Consider
∑

αnx2n.

We apply the Root Test to
∑

un where un = (αx2)n. The limit L = limn→∞ n
√

un = αx2 and so,
by the Root Test, the series converges if |x| < 1/

√
α and diverges if |x| > 1/

√
α. Therefore, by

definition, the radius of convergence is R = 1/
√

α.

2) Consider
∑(

α
n

)
xn where α > 0 is not an integer.

We apply the Ratio Test to
∑

un where un = |
(
α
n

)
||x|n. Since

un+1

un
=

|α(α− 1) · · · (α− n)||x|n+1

(n + 1)!
· n!
|α(α− 1) · · · (α− n + 1)||x|n

=
|α− n|
n + 1

|x| −→ |x|

the Ratio Test implies the series converges if |x| < 1 and diverges if |x| > 1. Therefore the radius
of convergence is R = 1.

3) Consider
∑

anxn where

an =
{

1 n even
1

nn n odd
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If we let un = an|x|n, we find that neither un+1/un nor n
√

un has a limit so the Root and Ratio
Tests are not effective.

The next theorem shows a reliable way to obtain the radius of convergence R for any power series∑
anxn.

Theorem 1 1/R = lim sup |an|1/n

Step 1): Show lim sup |an|1/n ≤ 1/R.

The case R = 0 is trivial (lim sup |an|1/n ≤ ∞), so we assume R > 0. Choose 0 < r < R. Since∑
anrn converges by the definition of R, ∃M such that |anrn| ≤ M , ∀n. This implies

lim sup |an|1/n ≤ 1
r

lim supM1/n =
1
r

Since this inequality is true ∀ r < R, lim sup |an|1/n ≤ 1/R.

Step 2): Show lim sup |an|1/n ≥ 1/R.

Define R0 by 1/R0 = lim sup |an|1/n (we allow R0 = 0 or ∞). The case R0 = 0 is trivial (∞ ≥ 1/R),
so we assume R0 > 0. Fix r, 0 < r < R0, and choose R1, r < R1 < R0. Since 1/R0 < 1/R1, the
definition of lim sup implies ∃N such that |an|1/n < 1/R1, ∀n ≥ N . This implies

|anrn| ≤
∣∣∣ r

R1

∣∣∣n ∀n ≥ N

Since |r/R1| < 1,
∑
|anrn| is dominated by the convergent geometric series

∑
|r/R1|n and is itself

convergent. Therefore, by the definition of radius of convergence, r ≤ R. Consequently, 1/R ≤ 1/r,
∀ r < R0, and so 1/R ≤ 1/R0.

Example: Consider
∑

anxx where an is defined as in example 3) above. Since lim sup |an|1/n = 1,
the radius of convergence is R = 1.

Theorem 2 Suppose f(x) =
∑∞

n=0 anxn has radius of convergence R. Then f(x) has derivatives
of all orders. The derivatives are given by differentiating the series term by term,

f (k)(x) =
∞∑

n=k

n(n− 1) · · · (n− k + 1)anxn−k

and have radius of convergence R. In particular,

an =
f (n)(0)

n!

By Proposition ??, the polynomials fk(x) =
∑k

n=0 anxn converge uniformly to f(x) =
∑∞

n=0 anxn

for |x| ≤ r < R where R is the radius of convergence. Since lim sup |nan|1/n = lim sup |an|1/n, the

3



radius of convergence of g(x) =
∑∞

n=1 nanxn−1 is still R by Theorem ??. Thus the polynomials
f ′k(x) =

∑k
n=1 nanxn−1 also converge uniformly to g(x) for |x| ≤ r < R. By the Theorem ??

(convergence of derivatives), f ′(x) = g(x). We can repeat this argument to obtain derivatives of
all orders. Finally, since r < R was arbitrary, the above statements hold for |x| < R.

1.3 Expansions of Power Series

Theorem 3 Suppose f(x) =
∑∞

n=0 an(x− x0)n has radius of convergence R. Then f has a power
series expansion about any point x1 in the interval |x− x0| < R, and the radius of convergence of
the new series is ≥ R− |x1 − x0|.

For simplicity of notation, we shall assume x0 = 0. We use the Binomial Theorem to expand xn in
terms of (x− x1)k,

xn = (x− x1 + x1)n =
n∑

k=0

(
n

k

)
xn−k

1 (x− x1)k

Then we plug this into the Taylor polynomial:

PN (x) =
N∑

n=0

anxn

=
N∑

n=0

an

n∑
k=0

(
n

k

)
xn−k

1 (x− x1)k

=
N∑

k=0

bk(x− x1)k [rearranging terms]

where bk =
∑N

n=k

(
n
k

)
anxn−k

1 =
∑N−k

n=0

(
n+k

k

)
an+kx

n
1 . The following diagram helps to see how the

indexes have been rearranged. The indexing of the original sum follows the vertical lines from
k = 0 to k = n with n running from 0 to N . The rearrangement indexes the same shaded region
horizontally from n = k to n = N with k running from 0 to N .

This suggests that f(x) =
∑∞

k=0 bk(x− x1)k where

bk =
∞∑

n=0

(
n + k

k

)
an+kx

n
1
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It is interesting to note that this formula for bk could be obtained by computing derivatives:

f (k)(x1) =
∞∑

n=k

n(n− 1) . . . (n− k + 1)anxn−k
1

f (k)(x1)
k!

=
∞∑

n=k

(
n

k

)
anxn−k

1 =
∞∑

n=0

(
n + k

k

)
an+kx

n
1 = bk

Note that the above series for bk converges for |x1| < R since the factor
(
n+k

k

)
= (n + k)(n + k −

1) · · · (n + 1)/k! is a polynomial in n and therefore
(
n+k

k

)1/n → 1 as n →∞ (apply Theorem ??).

To prove that the series
∑∞

k=0 bk(x−x1)k converges to f(x) we first show that the following series,
indexed by the pairs (n, k), k ≤ n, converges absolutely:

s(x) =
∞∑

n=0

n∑
k=0

(
n

k

)
anxn−k

1 (x− x1)k

Let r = |x− x1|+ |x1|. Then

n∑
k=0

(
n

k

)
|x− x1|n−k|x1|k = (|x− x1|+ |x1|)n = rn

Therefore,
∞∑

n=0

n∑
k=0

(
n

k

)
|an||x1|n−k|x− x1|k =

∞∑
n=0

|an|rn

converges for r < R (equivalently for |x−x1| < R−|x1|). Since the series s(x) converges absolutely,
we may rearrange the order of summation. Summing k first and then n gives

s(x) =
∞∑

n=0

an

n∑
k=0

(
n

k

)
xn−k

1 (x− x1)k = f(x)

Summing n first and then k gives

s(x) =
∞∑

k=0

( n∑
n=k

(
n

k

)
xn−k

1

)
(x− x1)k =

∞∑
k=0

bk(x− x1)k

Therefore, f(x) =
∑∞

k=0 bk(x− x1)k for |x− x1| < R− |x1|.

Definition 3 A function is analytic if it has a power series expansion about every point in its
domain.

1.3.1 Facts from Calculus

• Most important functions in mathematics are analytic, e.g.,
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– polynomials

– trigonometric functions

– exponential and logarithm functions

• If f and g are analytic, so are f ± g, f · g, f/g (wherever g(x) 6= 0) and f ◦ g are analytic.

• Taylor’s Theorem: If f is any function with derivatives up to order n + 1 at x0, then

f(x) =
n∑

k=0

f (k)(x0)
k!

(x− x0)k + Rn(x)

where

Rn(x) =
f (n+1)(c)
(n + 1)!

(x− x0)n+1

for some c between x0 and x, |c− x0| < |x− x0|. In particular, f is analytic at x0 if and only
if |Rn(x)| → 0 as n →∞ for x in some interval around x0.

1.3.2 A Fact from Complex Analysis.

If f is analytic, then the radius of convergence for the power series expansion around x0 is the
distance of x0 to the “nearest singularity” in the complex plane . A series with complex numbers
converges for all complex numbers within a circle of radius R of the center, and that is the origin
of the term radius of convergence.

Example: 1
1+x2 =

∑∞
n=0(−1)nx2n. The radius of convergence is R = 1 even though 1

1+x2 is defined
for all x ∈. But in , 1

1+x2 has singularities at x = ±i and the distance from 0 to ±i is 1 = R.

1.4 Analytic Continuation

A remarkable fact about an analytic function f is that its values on an interval (a, b) are determined
by its values on any neighborhood contained in (a, b), no matter how small. We are not assuming
that f has one power series expansion whose interval of convergence covers the entire interval (a, b),
so we cannot simply quote Theorem ?? to prove this statement.

What we do assume is that f has a power series expansion at each point of (a, b) with varying,
and perhaps very small, radii of convergence. The process of linking these series together from one
interval of convergence to the next is called analytic continuation. We shall now sketch how to do
this on (a, b).

Let (c, d) be an interval contained in the given neighborhood where we know the values of f(x).
Let p ∈ (a, b) \ (c, d). We must find the value of f(p) using the values of f(x) for x ∈ (c, d).
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Let us assume p > d (a similar argument would handle the case p < c). Let R1 be the radius of
convergence of the power series expansion of f about x1 = d. Choose x0 ∈ (x1 − R1, x1) close to
x1 = d. By Theorem ??, the radius of convergence of the power series expansion of f about x0

is R0 ≥ R1 − (x1 − x0). In particular, x1 ∈ (x0 − R0, x0 + R0). Therefore, the known values of
f (n)(x0) determine the values of f (n)(x1), and these in turn determine the values of f (through the
power series expansion at x1) in (c, d) ∪ (x1 −R1, x1 + R1).

Thus, we can always extend the interval of the known values of f past the endpoint of an interval
of previously known values (as long as we remain in (a, b)). Repeating this process, we obtain a
sequence of centers, xi = xi−1 +Ri−1 with radii of convergence Ri. We claim that p ∈ (xi−Ri, xi +
Ri) for some i. Otherwise, the centers must converge xi → q and the radii approach 0, Ri → 0. But
f has a power series expansion at q with radius of convergence Q and the intervals (xi−Ri, xi +Ri)
must eventually fall inside (q − Q, q + Q). For example, there is an xi with |xi − q| < Q/2 and
Ri < Q/2. This contradicts Theorem ?? which asserts that the radius of Ri should be at least
Q− |xi − q| > Q/2.
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