1 Approximation by Polynomials

We know that if f is analytic then it can be approximated by Taylor polynomials, P,(z) =

(k) . . .
Y ko ! k(!xo)(m — 20)*. In fact P,(z) — f(z) uniformly on compact subsets of its interval of
convergence.

Can continuous functions be approximated by polynomials?

1.1 Lagrange Interpolation

Let f be continuous on [a, b] and pick xg,...,z, € [a,b]. Then there is a polynomial P, of degree
n such that P,(z;) = f(z;) for j =0,...,n.

Here is how to construct P,: Define gy(x) = Il (x — ;). Then gi(x;) = 0if j # k and g () # 0.

Next define (@) 0 4k
kT N J

Finally, letting, ar = f(zx), we see that the polynomial

Po(z) = arQu()
k=0
has the desired properties.

Ezample: 1f f(z) = sin(4z) and xp = k, for £ = 0,...,5, the 5th degree polynomial obtained by
Lagrange interpolation does not approximate f(z) well.

We could hope that P, — f as n — oo, although, it is not clear how to prove this. A better idea
is to use convolution with polynomials.

1.2 Convolution

Definition 1 The support of a function f is the closure of the set of points x in the domain of f
such that f(x) # 0.

Note: If the support of a function f is compact then f must vanish outside a bounded interval:

f(x)=0,Vz ¢ [a,b].



Definition 2 Let f and g be integrable functions and assume either f or g has compact support.
The convolution of f and g is

[l / fx — g(t) dt
Note: By making a change of variable, u = x —t, t = x — u, is it easy to show that fxg=g¢gx f.

Theorem 1 Let be f integrable and have compact support. If g is a polynomial of degree n, then
f *g is a polynomial of degree < n.

Let g(z) = Y.} _, axx® and suppose f(z) =0, Vz ¢ [a,b]. Then

b
frgl) = gxfla)= / gl — 0 f(t) dt

k=0
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Theorem 2 Let f be C' and have compact support. Let g be continuous. Then (f x g)' = f' x g.

We compute the derivative at zg using an arbitrary sequence x,, — xg:

(f*g/(@o) = lim L *Q@fn) — f * g(x0)

n—oo — 1‘0

= lim

i /fl‘n—t dt /f{l,‘o—t
n—00 Ty, — I
fxn—t f(zo—1)

= i t
Jim. _— g(t) dt
= lim [ f'(zn— t)g(t) dt

for some z, between zy and x,, by the Mean Value Theorem. We now show that f’(z, — t)g(t) —
f(xo —t)g(t) uniformly so that we may interchange the limit and the integral, by Theorem 77, to



get

n—oo

= (f'*g)(z0)
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Since f has compact support, say contained in [a, b], the support of f’ must necessarily fall in that
same interval and therefore is compact (if f = 0 then f’ = 0). By Theorem ??, f’ is uniformly
continuous on [a, b], and hence uniformly continuous on since f’ = 0 outside [a, b]. Since z, — zq,
there is some closed interval, [c,d], that contains all z,, and xg. Then z, —t,zg —t € [a,b] =t €
[c —b,d — a]. Let M be the maximum of g on [c — b,d — a.

Since f’ is uniformly continuous, V1/m, 31/k such that

1
m- M

[f'(zn —t) = f'(z0 —1)| <

whenever

1
|(zn = 1) = (20 = )] = |2n — @0 <

However, 4 N such that
1
|zn, — x0| < Z Vn>N

Therefore, if n > N, then

7o = (8) = 20~ 09O < | (on — 8) = (o~ OIM < - Ve

and hence f'(z, —t)g(t) — f(xg — t)g(t) uniformly.

1.3 Weierstrass Approximation Theorem

Theorem 3 Let f be continuous on [a,b]. Then there exists a sequence of polynomials converging
uniformly to f on [a,b].

We may assume [a, b] = [0, 1], for if the theorem is true for
g9(t) = fla+(b—a)t) te[0,1]

then there exists polynomials @, (t) — ¢(t) uniformly on [0, 1] and this implies that the polynomials
P (z) = Qm((x —a)/(b—a)) — f(z) uniformly on [a,b]. We may also assume f(0) = f(1) =0,
for if the theorem is true for

g(x) = f(x) = £(0) —2(f(1) = f(0))

then there exist polynomials @, — ¢ uniformly on [0, 1] and this implies that the polynomials
Pp(x) = Qm(x)+ f(0)—z(f(1)— f(0)) — f(z) uniformly on [0, 1]. We extend f(z) to a continuous
function on by f(z) =0, Vx ¢ [0, 1].



Define h,,(z) = ¢, (1 — 22)™ where ¢,, = f_ll(l — z2)™dz, so
1
/ hm(x)dx =1 (1)
-1
In order to estimate h,, we need a lower bound for ¢,,:
1 1 1/y/m
Cm = / (1—2*)"dx = 2/ (1—2z*)"dx > 2/ (1 —2?)"dx
-1 0 0

It is easy to verify the inequality 1 —ma? < (1—2*)™ for z € [0,1]: If ¢(x) = (1 —2%)™ — (1 —ma?)
then ¢(x) > 0 because ¢(0) = 0 and ¢/(z) > 0 for = € [0, 1]. Inserting this inequality above gives

2/ Y mada = s ]
Cm > —mxo)dr = —— > ——
0 3vm  /m

Since, ¢! < \/m we see that h,, — 0 uniformly for 1/n < |z| < 1:
~1 2ym Lym
h(z) = ¢, (1 — 27) §m<1—$> —0, m— o0 (2)

On the other hand f_ll hm(x)dz = 1, so the graph of h,,(x) is more and more concentrated at 0 as
m — oo. In fact, we may think of the limit as the Dirac delta function, lim,, e hm(z) = do().

Define P, (z) = f_ll f@=1)hy(t)dt = f*hpy,(x) for x € [0,1]. By Theorem ??, P, is a polynomial
of degree < 2m. We now show that P,, — f uniformly.

Given € > 0, choose 1/n such that if |y — z| < 1/n, then |f(y) — f(z)| < €/2 (uniform continuity).
Using the fact that [~ hp(t) dt = 1, we get

1

Pa@) @) = | [ s nm @ 5@ [

B (1) dt‘
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Now, |f(z —t) — f(t)| < 2M where M is the maximum of f on [0,1] and |f(z —t) — f(x)| < €/2 if
|(x —t) — x| = |t| < 1/n. So, breaking [—1, 1] up into [-1,—1/n]U[-1/n,1/n] U[1/n,1], we get

—1/n 1/n 1
() — f(2)] < 2M/ (1) dt 45 [ () dt+2M/ o (1) it
—1 —1/n 1/n

The first and third integrals are < 2M/m(1 —1/n?)™(1 —1/n) < 2M/m(1 —1/n?)™ by estimate
(??). The middle integral is < €/2 by property (?7). So

Pole) — f)] < adrvim(1— )" 4§ <

4



for m large enough and for all « € [0, 1]. Therefore, P,,, — f uniformly on [0, 1].

One of the advantages of using convolution for polynomial approximations is that it gives more
information about derivatives.

Corollary 4 If f € C'[a,b], then there exists a sequence of polynomials Py, such that P,, — f and
P/, — f uniformly on [a,b].

As in the previous proof, we may assume that [a,b] = [0, 1]. Furthermore, by subtracting the cubic
polynomial

[2£(0) = 2f(1) + £(0) + £ ()]
+[3£(1) = 3f(0) +2f'(0) — 2f'(0) — f'(1)]2® + f'(0)x + f(0)
from f we may assume f and f’ can be extended continuously by 0 to . Let P, = f * h,, as above.

By Theorem ??, P/ = f’* hy,. Therefore both P,, — f and P/, — f’ uniformly on [a,b] by the
previous proof.



