1 Approximation by Polynomials

We know that if f is analytic then it can be approximated by Taylor polynomials, $P_{n}(x)=$ $\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$. In fact $P_{n}(x) \rightarrow f(x)$ uniformly on compact subsets of its interval of convergence.

Can continuous functions be approximated by polynomials?

1.1 Lagrange Interpolation

Let f be continuous on $[a, b]$ and pick $x_{0}, \ldots, x_{n} \in[a, b]$. Then there is a polynomial P_{n} of degree n such that $P_{n}\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0, \ldots, n$.

Here is how to construct P_{n} : Define $q_{k}(x)=\Pi_{j \neq k}\left(x-x_{j}\right)$. Then $q_{k}\left(x_{j}\right)=0$ if $j \neq k$ and $q_{k}\left(x_{k}\right) \neq 0$. Next define

$$
Q_{k}(x)=\frac{q_{k}(x)}{q_{k}\left(x_{k}\right)} \quad \text { so } \quad Q_{k}\left(x_{j}\right)=\left\{\begin{array}{cc}
0 & j \neq k \\
1 & j=k
\end{array}\right.
$$

Finally, letting, $a_{k}=f\left(x_{k}\right)$, we see that the polynomial

$$
P_{n}(x)=\sum_{k=0}^{n} a_{k} Q_{k}(x)
$$

has the desired properties.
Example: If $f(x)=\sin (4 x)$ and $x_{k}=k$, for $k=0, \ldots, 5$, the 5 th degree polynomial obtained by Lagrange interpolation does not approximate $f(x)$ well.

We could hope that $P_{n} \rightarrow f$ as $n \rightarrow \infty$, although, it is not clear how to prove this. A better idea is to use convolution with polynomials.

1.2 Convolution

Definition 1 The support of a function f is the closure of the set of points x in the domain of f such that $f(x) \neq 0$.

Note: If the support of a function f is compact then f must vanish outside a bounded interval: $f(x)=0, \forall x \notin[a, b]$.

Definition 2 Let f and g be integrable functions and assume either f or g has compact support. The convolution of f and g is

$$
f * g(x)=\int_{-\infty}^{\infty} f(x-t) g(t) d t
$$

Note: By making a change of variable, $u=x-t, t=x-u$, is it easy to show that $f * g=g * f$.

Theorem 1 Let be f integrable and have compact support. If g is a polynomial of degree n, then $f * g$ is a polynomial of degree $\leq n$.

Let $g(x)=\sum_{k=0}^{n} a_{k} x^{k}$ and suppose $f(x)=0, \forall x \notin[a, b]$. Then

$$
\begin{aligned}
f * g(x) & =g * f(x)=\int_{a}^{b} g(x-t) f(t) d t \\
& =\int_{a}^{b} \sum_{k=0}^{n} a_{k}(x-t)^{k} f(t) d t \\
& =\int_{a}^{b} \sum_{k=0}^{n} \sum_{j=0}^{k}(-1)^{k-j} a_{k}\binom{k}{j} x^{j} t^{k-j} f(t) d t \\
& =\sum_{j=0}^{n} b_{j} x^{j}
\end{aligned}
$$

where

$$
b_{j}=\sum_{k=j}^{n}\left\{(-1)^{k-j} a_{k}\binom{k}{j} \int_{a}^{b} t^{k-j} f(t) d t\right\} \in
$$

Theorem 2 Let f be C^{1} and have compact support. Let g be continuous. Then $(f * g)^{\prime}=f^{\prime} * g$.

We compute the derivative at x_{0} using an arbitrary sequence $x_{n} \rightarrow x_{0}$:

$$
\begin{aligned}
(f * g)^{\prime}\left(x_{0}\right) & =\lim _{n \rightarrow \infty} \frac{f * g\left(x_{n}\right)-f * g\left(x_{0}\right)}{x_{n}-x_{0}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{x_{n}-x_{0}}\left[\int f\left(x_{n}-t\right) g(t) d t-\int f\left(x_{0}-t\right) g(t) d t\right] \\
& =\lim _{n \rightarrow \infty} \int \frac{f\left(x_{n}-t\right)-f\left(x_{0}-t\right)}{x_{n}-x_{0}} g(t) d t \\
& =\lim _{n \rightarrow \infty} \int f^{\prime}\left(z_{n}-t\right) g(t) d t
\end{aligned}
$$

for some z_{n} between x_{0} and x_{n} by the Mean Value Theorem. We now show that $f^{\prime}\left(z_{n}-t\right) g(t) \rightarrow$ $f\left(x_{0}-t\right) g(t)$ uniformly so that we may interchange the limit and the integral, by Theorem ??, to
get

$$
\begin{aligned}
(f * g)^{\prime}\left(x_{0}\right) & =\int \lim _{n \rightarrow \infty} f^{\prime}\left(z_{n}-t\right) g(t) d t=\int f^{\prime}\left(x_{0}-t\right) g(t) d t \\
& =\left(f^{\prime} * g\right)\left(x_{0}\right)
\end{aligned}
$$

Since f has compact support, say contained in $[a, b]$, the support of f^{\prime} must necessarily fall in that same interval and therefore is compact (if $f \equiv 0$ then $f^{\prime} \equiv 0$). By Theorem ??, f^{\prime} is uniformly continuous on $[a, b]$, and hence uniformly continuous on since $f^{\prime} \equiv 0$ outside $[a, b]$. Since $z_{n} \rightarrow x_{0}$, there is some closed interval, $[c, d]$, that contains all z_{n} and x_{0}. Then $z_{n}-t, x_{0}-t \in[a, b] \Rightarrow t \in$ $[c-b, d-a]$. Let M be the maximum of g on $[c-b, d-a]$.

Since f^{\prime} is uniformly continuous, $\forall 1 / m, \exists 1 / k$ such that

$$
\left|f^{\prime}\left(z_{n}-t\right)-f^{\prime}\left(x_{0}-t\right)\right|<\frac{1}{m \cdot M}
$$

whenever

$$
\left|\left(z_{n}-t\right)-\left(x_{0}-t\right)\right|=\left|z_{n}-x_{0}\right|<\frac{1}{k}
$$

However, $\exists N$ such that

$$
\left|z_{n}-x_{0}\right|<\frac{1}{k} \quad \forall n \geq N
$$

Therefore, if $n \geq N$, then

$$
\left|f^{\prime}\left(z_{n}-t\right) g(t)-f^{\prime}\left(x_{0}-t\right) g(t)\right| \leq\left|f^{\prime}\left(z_{n}-t\right)-f^{\prime}\left(x_{0}-t\right)\right| M<\frac{1}{m} \quad \forall t
$$

and hence $f^{\prime}\left(z_{n}-t\right) g(t) \rightarrow f\left(x_{0}-t\right) g(t)$ uniformly.

1.3 Weierstrass Approximation Theorem

Theorem 3 Let f be continuous on $[a, b]$. Then there exists a sequence of polynomials converging uniformly to f on $[a, b]$.

We may assume $[a, b]=[0,1]$, for if the theorem is true for

$$
g(t)=f(a+(b-a) t) \quad t \in[0,1]
$$

then there exists polynomials $Q_{m}(t) \rightarrow g(t)$ uniformly on $[0,1]$ and this implies that the polynomials $P_{m}(x)=Q_{m}((x-a) /(b-a)) \rightarrow f(x)$ uniformly on $[a, b]$. We may also assume $f(0)=f(1)=0$, for if the theorem is true for

$$
g(x)=f(x)-f(0)-x(f(1)-f(0))
$$

then there exist polynomials $Q_{m} \rightarrow g$ uniformly on $[0,1]$ and this implies that the polynomials $P_{m}(x)=Q_{m}(x)+f(0)-x(f(1)-f(0)) \rightarrow f(x)$ uniformly on $[0,1]$. We extend $f(x)$ to a continuous function on by $f(x)=0, \forall x \notin[0,1]$.

Define $h_{m}(x)=c_{m}^{-1}\left(1-x^{2}\right)^{m}$ where $c_{m}=\int_{-1}^{1}\left(1-x^{2}\right)^{m} d x$, so

$$
\begin{equation*}
\int_{-1}^{1} h_{m}(x) d x=1 \tag{1}
\end{equation*}
$$

In order to estimate h_{m} we need a lower bound for c_{m} :

$$
c_{m}=\int_{-1}^{1}\left(1-x^{2}\right)^{m} d x=2 \int_{0}^{1}\left(1-x^{2}\right)^{m} d x \geq 2 \int_{0}^{1 / \sqrt{m}}\left(1-x^{2}\right)^{m} d x
$$

It is easy to verify the inequality $1-m x^{2} \leq\left(1-x^{2}\right)^{m}$ for $x \in[0,1]$: If $q(x)=\left(1-x^{2}\right)^{m}-\left(1-m x^{2}\right)$ then $q(x) \geq 0$ because $q(0)=0$ and $q^{\prime}(x) \geq 0$ for $x \in[0,1]$. Inserting this inequality above gives

$$
c_{m} \geq 2 \int_{0}^{1 / \sqrt{m}}\left(1-m x^{2}\right) d x=\frac{4}{3 \sqrt{m}}>\frac{1}{\sqrt{m}}
$$

Since, $c_{m}^{-1}<\sqrt{m}$ we see that $h_{m} \rightarrow 0$ uniformly for $1 / n \leq|x| \leq 1$:

$$
\begin{equation*}
h_{m}(x)=c_{m}^{-1}\left(1-x^{2}\right)^{m} \leq \sqrt{m}\left(1-\frac{1}{n^{2}}\right)^{m} \rightarrow 0, \quad m \rightarrow \infty \tag{2}
\end{equation*}
$$

On the other hand $\int_{-1}^{1} h_{m}(x) d x=1$, so the graph of $h_{m}(x)$ is more and more concentrated at 0 as $m \rightarrow \infty$. In fact, we may think of the limit as the Dirac delta function, $\lim _{m \rightarrow \infty} h_{m}(x)=\delta_{0}(x)$.

Define $P_{m}(x)=\int_{-1}^{1} f(x-1) h_{m}(t) d t=f * h_{m}(x)$ for $x \in[0,1]$. By Theorem ??, P_{m} is a polynomial of degree $\leq 2 m$. We now show that $P_{m} \rightarrow f$ uniformly.

Given $\epsilon>0$, choose $1 / n$ such that if $|y-x|<1 / n$, then $|f(y)-f(x)|<\epsilon / 2$ (uniform continuity). Using the fact that $\int_{-1}^{1} h_{m}(t) d t=1$, we get

$$
\begin{aligned}
\left|P_{m}(x)-f(x)\right| & =\left|\int_{-1}^{1} f(x-t) h_{m}(t) d t-f(x) \int_{-1}^{1} h_{m}(t) d t\right| \\
& =\left|\int_{-1}^{1}(f(x-t)-f(x)) h_{m}(t) d t\right| \\
& \leq \int_{-1}^{1}|f(x-t)-f(x)| h_{m}(t) d t
\end{aligned}
$$

Now, $|f(x-t)-f(t)|<2 M$ where M is the maximum of f on $[0,1]$ and $|f(x-t)-f(x)|<\epsilon / 2$ if $|(x-t)-x|=|t|<1 / n$. So, breaking $[-1,1]$ up into $[-1,-1 / n] \cup[-1 / n, 1 / n] \cup[1 / n, 1]$, we get

$$
\left|P_{m}(x)-f(x)\right| \leq 2 M \int_{-1}^{-1 / n} h_{m}(t) d t+\frac{\epsilon}{2} \int_{-1 / n}^{1 / n} h_{m}(t) d t+2 M \int_{1 / n}^{1} h_{m}(t) d t
$$

The first and third integrals are $\leq 2 M \sqrt{m}\left(1-1 / n^{2}\right)^{m}(1-1 / n)<2 M \sqrt{m}\left(1-1 / n^{2}\right)^{m}$ by estimate (??). The middle integral is $<\epsilon / 2$ by property (??). So

$$
\left|P_{m}(x)-f(x)\right| \leq 4 M \sqrt{m}\left(1-\frac{1}{n^{2}}\right)^{m}+\frac{\epsilon}{2}<\epsilon
$$

for m large enough and for all $x \in[0,1]$. Therefore, $P_{m} \rightarrow f$ uniformly on $[0,1]$.
One of the advantages of using convolution for polynomial approximations is that it gives more information about derivatives.

Corollary 4 If $f \in C^{1}[a, b]$, then there exists a sequence of polynomials P_{m} such that $P_{m} \rightarrow f$ and $P_{m}^{\prime} \rightarrow f^{\prime}$ uniformly on $[a, b]$.

As in the previous proof, we may assume that $[a, b]=[0,1]$. Furthermore, by subtracting the cubic polynomial

$$
\begin{aligned}
& {\left[2 f(0)-2 f(1)+f^{\prime}(0)+f^{\prime}(1)\right] x^{3}} \\
& \quad+\left[3 f(1)-3 f(0)+2 f^{\prime}(0)-2 f^{\prime}(0)-f^{\prime}(1)\right] x^{2}+f^{\prime}(0) x+f(0)
\end{aligned}
$$

from f we may assume f and f^{\prime} can be extended continuously by 0 to . Let $P_{m}=f * h_{m}$ as above. By Theorem ??, $P_{m}^{\prime}=f^{\prime} * h_{m}$. Therefore both $P_{m} \rightarrow f$ and $P_{m}^{\prime} \rightarrow f^{\prime}$ uniformly on $[a, b]$ by the previous proof.

