
1 Approximation by Polynomials

We know that if f is analytic then it can be approximated by Taylor polynomials, Pn(x) =∑n
k=0

f (k)(x0)
k! (x − x0)k. In fact Pn(x) → f(x) uniformly on compact subsets of its interval of

convergence.

Can continuous functions be approximated by polynomials?

1.1 Lagrange Interpolation

Let f be continuous on [a, b] and pick x0, . . . , xn ∈ [a, b]. Then there is a polynomial Pn of degree
n such that Pn(xj) = f(xj) for j = 0, . . . , n.

Here is how to construct Pn: Define qk(x) = Πj 6=k(x−xj). Then qk(xj) = 0 if j 6= k and qk(xk) 6= 0.
Next define

Qk(x) =
qk(x)
qk(xk)

so Qk(xj) =
{

0 j 6= k
1 j = k

Finally, letting, ak = f(xk), we see that the polynomial

Pn(x) =
n∑

k=0

akQk(x)

has the desired properties.

Example: If f(x) = sin(4x) and xk = k, for k = 0, . . . , 5, the 5th degree polynomial obtained by
Lagrange interpolation does not approximate f(x) well.

We could hope that Pn → f as n → ∞, although, it is not clear how to prove this. A better idea
is to use convolution with polynomials.

1.2 Convolution

Definition 1 The support of a function f is the closure of the set of points x in the domain of f
such that f(x) 6= 0.

Note: If the support of a function f is compact then f must vanish outside a bounded interval:
f(x) = 0, ∀x /∈ [a, b].
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Definition 2 Let f and g be integrable functions and assume either f or g has compact support.
The convolution of f and g is

f ∗ g(x) =
∫ ∞

−∞
f(x− t)g(t) dt

Note: By making a change of variable, u = x− t, t = x− u, is it easy to show that f ∗ g = g ∗ f .

Theorem 1 Let be f integrable and have compact support. If g is a polynomial of degree n, then
f ∗ g is a polynomial of degree ≤ n.

Let g(x) =
∑n

k=0 akx
k and suppose f(x) = 0, ∀x /∈ [a, b]. Then

f ∗ g(x) = g ∗ f(x) =
∫ b

a
g(x− t)f(t) dt

=
∫ b

a

n∑
k=0

ak(x− t)kf(t) dt

=
∫ b

a

n∑
k=0

k∑
j=0

(−1)k−jak

(
k

j

)
xjtk−jf(t) dt

=
n∑

j=0

bjx
j

where

bj =
n∑

k=j

{
(−1)k−jak

(
k

j

) ∫ b

a
tk−jf(t) dt

}
∈

Theorem 2 Let f be C1 and have compact support. Let g be continuous. Then (f ∗ g)′ = f ′ ∗ g.

We compute the derivative at x0 using an arbitrary sequence xn → x0:

(f ∗ g)′(x0) = lim
n→∞

f ∗ g(xn)− f ∗ g(x0)
xn − x0

= lim
n→∞

1
xn − x0

[ ∫
f(xn − t)g(t) dt−

∫
f(x0 − t)g(t) dt

]
= lim

n→∞

∫
f(xn − t)− f(x0 − t)

xn − x0
g(t) dt

= lim
n→∞

∫
f ′(zn − t)g(t) dt

for some zn between x0 and xn by the Mean Value Theorem. We now show that f ′(zn − t)g(t) →
f(x0 − t)g(t) uniformly so that we may interchange the limit and the integral, by Theorem ??, to
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get

(f ∗ g)′(x0) =
∫

lim
n→∞

f ′(zn − t)g(t) dt =
∫

f ′(x0 − t)g(t) dt

= (f ′ ∗ g)(x0)

Since f has compact support, say contained in [a, b], the support of f ′ must necessarily fall in that
same interval and therefore is compact (if f ≡ 0 then f ′ ≡ 0). By Theorem ??, f ′ is uniformly
continuous on [a, b], and hence uniformly continuous on since f ′ ≡ 0 outside [a, b]. Since zn → x0,
there is some closed interval, [c, d], that contains all zn and x0. Then zn − t, x0 − t ∈ [a, b] ⇒ t ∈
[c− b, d− a]. Let M be the maximum of g on [c− b, d− a].

Since f ′ is uniformly continuous, ∀ 1/m, ∃ 1/k such that

|f ′(zn − t)− f ′(x0 − t)| < 1
m ·M

whenever
|(zn − t)− (x0 − t)| = |zn − x0| <

1
k

However, ∃N such that

|zn − x0| <
1
k

∀n ≥ N

Therefore, if n ≥ N , then

|f ′(zn − t)g(t)− f ′(x0 − t)g(t)| ≤ |f ′(zn − t)− f ′(x0 − t)|M <
1
m

∀ t

and hence f ′(zn − t)g(t) → f(x0 − t)g(t) uniformly.

1.3 Weierstrass Approximation Theorem

Theorem 3 Let f be continuous on [a, b]. Then there exists a sequence of polynomials converging
uniformly to f on [a, b].

We may assume [a, b] = [0, 1], for if the theorem is true for

g(t) = f(a + (b− a)t) t ∈ [0, 1]

then there exists polynomials Qm(t) → g(t) uniformly on [0, 1] and this implies that the polynomials
Pm(x) = Qm((x − a)/(b − a)) → f(x) uniformly on [a, b]. We may also assume f(0) = f(1) = 0,
for if the theorem is true for

g(x) = f(x)− f(0)− x(f(1)− f(0))

then there exist polynomials Qm → g uniformly on [0, 1] and this implies that the polynomials
Pm(x) = Qm(x)+f(0)−x(f(1)−f(0)) → f(x) uniformly on [0, 1]. We extend f(x) to a continuous
function on by f(x) = 0, ∀x /∈ [0, 1].
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Define hm(x) = c−1
m (1− x2)m where cm =

∫ 1
−1(1− x2)mdx, so∫ 1

−1
hm(x) dx = 1 (1)

In order to estimate hm we need a lower bound for cm:

cm =
∫ 1

−1
(1− x2)mdx = 2

∫ 1

0
(1− x2)mdx ≥ 2

∫ 1/
√

m

0
(1− x2)mdx

It is easy to verify the inequality 1−mx2 ≤ (1−x2)m for x ∈ [0, 1]: If q(x) = (1−x2)m− (1−mx2)
then q(x) ≥ 0 because q(0) = 0 and q′(x) ≥ 0 for x ∈ [0, 1]. Inserting this inequality above gives

cm ≥ 2
∫ 1/

√
m

0
(1−mx2)dx =

4
3
√

m
>

1√
m

Since, c−1
m <

√
m we see that hm → 0 uniformly for 1/n ≤ |x| ≤ 1:

hm(x) = c−1
m (1− x2)m ≤

√
m

(
1− 1

n2

)m
→ 0, m →∞ (2)

On the other hand
∫ 1
−1 hm(x) dx = 1, so the graph of hm(x) is more and more concentrated at 0 as

m →∞. In fact, we may think of the limit as the Dirac delta function, limm→∞ hm(x) = δ0(x).

Define Pm(x) =
∫ 1
−1 f(x−1)hm(t) dt = f ∗hm(x) for x ∈ [0, 1]. By Theorem ??, Pm is a polynomial

of degree ≤ 2m. We now show that Pm → f uniformly.

Given ε > 0, choose 1/n such that if |y − x| < 1/n, then |f(y)− f(x)| < ε/2 (uniform continuity).
Using the fact that

∫ 1
−1 hm(t) dt = 1, we get

|Pm(x)− f(x)| =
∣∣∣ ∫ 1

−1
f(x− t)hm(t) dt− f(x)

∫ 1

−1
hm(t) dt

∣∣∣
=

∣∣∣ ∫ 1

−1
(f(x− t)− f(x))hm(t) dt

∣∣∣
≤

∫ 1

−1
|f(x− t)− f(x)|hm(t) dt

Now, |f(x− t)− f(t)| < 2M where M is the maximum of f on [0, 1] and |f(x− t)− f(x)| < ε/2 if
|(x− t)− x| = |t| < 1/n. So, breaking [−1, 1] up into [−1,−1/n] ∪ [−1/n, 1/n] ∪ [1/n, 1], we get

|Pm(x)− f(x)| ≤ 2M

∫ −1/n

−1
hm(t) dt +

ε

2

∫ 1/n

−1/n
hm(t) dt + 2M

∫ 1

1/n
hm(t) dt

The first and third integrals are ≤ 2M
√

m(1− 1/n2)m(1− 1/n) < 2M
√

m(1− 1/n2)m by estimate
(??). The middle integral is < ε/2 by property (??). So

|Pm(x)− f(x)| ≤ 4M
√

m
(
1− 1

n2

)m
+

ε

2
< ε
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for m large enough and for all x ∈ [0, 1]. Therefore, Pm → f uniformly on [0, 1].

One of the advantages of using convolution for polynomial approximations is that it gives more
information about derivatives.

Corollary 4 If f ∈ C1[a, b], then there exists a sequence of polynomials Pm such that Pm → f and
P ′m → f ′ uniformly on [a, b].

As in the previous proof, we may assume that [a, b] = [0, 1]. Furthermore, by subtracting the cubic
polynomial

[2f(0)− 2f(1) + f ′(0) + f ′(1)]x3

+ [3f(1)− 3f(0) + 2f ′(0)− 2f ′(0)− f ′(1)]x2 + f ′(0)x + f(0)

from f we may assume f and f ′ can be extended continuously by 0 to . Let Pm = f ∗hm as above.
By Theorem ??, P ′m = f ′ ∗ hm. Therefore both Pm → f and P ′m → f ′ uniformly on [a, b] by the
previous proof.
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