1 Equicontinuity

1.1 Existence of Convergent Subsequences

The following type of problem frequently arises in analysis: Given a family of functions, $\mathcal{F} \subset C[0, 1]$, can we find a function $f_0 \in C[0, 1]$ ($f_0 \in \mathcal{F}$?) that minimizes some quantity E(f) over all $f \in \mathcal{F}$.

For example, let $E(f) = \int_0^1 |f(x)|^2 dx$. Since $E(f) \ge 0$, $\forall f \in \mathcal{F}$, $m = \inf_{f \in \mathcal{F}} E(f)$ exists and so $\exists \{f_n\} \subset \mathcal{F}$ such that $E(f_n) \to m$. Now if we could find a subsequence $\{f_{n'}\}$ that converged uniformly to f_0 , then f_0 would be continuous by Theorem ?? and $E(f_{n'}) \to E(f_0) = m$.

Not all sequences $\{f_n\} \subset C[a, b]$ have convergent subsequences.

Example: $f_n(x) = n$.

This problem does not occur if we can put a uniform bound on every function in the sequence.

Definition 1 A family of functions, \mathcal{F} , is uniformly bounded if $\exists M$ such that $|f(x)| \leq M$, $\forall x \in [a, b]$ and $\forall f \in \mathcal{F}$.

Not all bounded sequences $\{f_n\} \subset C[a, b]$ have convergent subsequences.

Example: $f_n(x) = \sin(nx)$.

This problem does not occur if the oscillations (or the "continuity") of the functions in the sequence can be controlled in a uniform way.

Definition 2 A family of functions, \mathcal{F} , is uniformly equicontinuous if $\forall 1/m$, $\exists 1/n$ (depending only on 1/m) such that

$$|x-y| < \frac{1}{n} \Rightarrow |f(x) - f(y)| < \frac{1}{m}, \quad \forall f \in \mathcal{F}$$

1.2 Arzela-Ascoli Theorem

Theorem 1 If $\{f_n\} \subset C[a,b]$ is uniformly bounded and uniformly equicontinuous, then there is a subsequence $f_{n'}$ converging uniformly to $f \in C[a,b]$.

Let x_1, x_2, x_3, \ldots be a countable dense subset of [a, b], e.g., $[a, b] \cap$. Then for each fixed $k, f_1(x_k), f_2(x_k), f_3(x_k), \ldots$ is a bounded sequence $(|f_n(x)| \leq M, \forall x \in [a, b], \forall n)$. So, for each k, there is a convergent subsequence, $f_{n'}(x_k) \to c_k$.

From such subsequences we want to extract a subsequence that converges simultaneously $\forall k$. We do this as follows:

$$\{f_{1i}\} \subset \{f_n\} : [f_{11}(x_1)], f_{12}(x_1), f_{13}(x_1), \dots \to c_1$$

$$\{f_{2i}\} \subset \{f_{1i}\} : f_{21}(x_2), f_{22}(x_2)], f_{23}(x_2), \dots \to c_2$$

$$\{f_{3i}\} \subset \{f_{2i}\} : f_{31}(x_3), f_{32}(x_3), f_{33}(x_3)], \dots \to c_3$$

We take the diagonal subsequence of functions, f_{11} , f_{22} , f_{33} , Except for the first k functions, $\{f_{ii}\}$ is a subsequence of the kth row, $\{f_{ki}\}$. Therefore, $\{f_{ii}\}$ converges simultaneously on all x_n .

We now show $\{f_{ii}\}$ converges uniformly on [a, b] (the limit function is automatically continuous by Theorem ??). We will prove the *uniform Cauchy criterion* holds:

Given 1/m, $\exists N$ such that $|f_{kk}(x) - f_{jj}(x)| < 1/m$, $\forall x \in [a, b]$ and $\forall j, k \ge N$.

The assumption of uniform equicontinuity implies $\exists 1/n$ such that

$$|x - y| < \frac{1}{n} \Rightarrow |f_j(x) - f_j(y)| < \frac{1}{3m} \quad \forall j$$
(1)

Since $\bigcup (x_k - 1/n, x_k + 1/n)$ covers the compact interval [a, b], there is a finite subcover. To keep the notation simple, we re-index the x_k 's so that

$$[a,b] \subset (x_1 - \frac{1}{n_1}, x_1 + \frac{1}{n_1}) \cup \ldots \cup (x_r - \frac{1}{n_r}, x_r + \frac{1}{n_r})$$

We know $f_{ii}(x_p)$ converges for p = 1, ..., r. So $\exists N$ such that

$$|f_{kk}(x_p) - f_{jj}(x_p)| < \frac{1}{3m}, \forall j, k \ge N, p = 1, \dots, r$$
 (2)

Conclusion: If $j, k \ge N$ and $x \in [a, b]$, then $\exists x_p$ such that $|x - x_p| < 1/n$. Therefore, applying (??) and (??),

$$\begin{aligned} |f_{kk}(x) - f_{jj}(x)| \\ &\leq |f_{kk}(x) - f_{kk}(x_p)| + |f_{kk}(x_p) - f_{jj}(x_p)| + |f_{jj}(x_p) - f_{jj}(x)| \\ &< \frac{1}{3m} + \frac{1}{3m} + \frac{1}{3m} = \frac{1}{m} \end{aligned}$$

1.3 Criterion for Equicontinuity

Theorem 2 If $\{f_k\} \subset C^1[a,b]$ and $|f'_k(x)| \leq M, \forall k, and x \in [a,b]$, then $\{f_k\}$ is uniformly equicontinuous.

Given 1/m, let $n = m \cdot M$. Then $\forall x, y \in [a, b]$, the Mean Value Theorem implies there is a z between x and y such that

$$f'_k(z) = \frac{f_k(x) - f_k(y)}{x - y}$$

Therefore,

$$|f_k(x) - f_k(y)| = |f'_k(z)| |x - y| \le M |x - y| < \frac{1}{m}$$

whenever |x - y| < 1/n.

Corollary 3 Suppose $\{f_k\} \subset C^1[a, b]$, and $\exists M$ such that $|f_k(x)| \leq M$ and $|f'_k(x)| \leq M$, $\forall k$ and $x \in [a, b]$. Then there is a subsequence $\{f_{k'}\}$ converging uniformly $f_{k'} \to f \in C[a, b]$.

Remember: uniform means "for all x"; equi- means "for all k"