1 Structures on Euclidean Space

Euclidean space is the set of ordered n-tuples of real numbers,

"={(x1,...,zpn) | ; €}

In this section we shall examine various “structures” on ":

e vector space
e metric space
e normed space (Banach space)

e inner product space (Hilbert space)

1.1 Vector Spaces

Definition 1 A vector space over a field is a set V equipped with two operations:
Vector Addition Vv,w € V, v+ w € V; commutative, associative, identity element (0), and
inverses exist (v+ (—v) =0).

Scalar Multiplication Va €, v €V, Ja-v € V; associative and distributive.

Ezample: Euclidean space becomes a vector space by defining addition and scalar multiplication
by

33+Z/ - (l‘1+y17~-755n+yn)

ar = (azy,...,ax,)

for x = (z1,...,2n),y = (Y1,---,Yn) €" and a €.

A standard basis for ™ is e; = (1,0,...,0), e2 = (0,1,0,...,0), ..., e, = (0,...,0,1). Thus x €"
can be written x = x1e1 + ...+ z,e,. The dimension of ™ is dim™ = n, but a vector space can have
infinite dimension.

Ezxample: V = C|a,b] with normal addition of functions and scalar multiplication is an infinite

dimensional vector space over .

1.2 Metric Spaces

Definition 2 A metric space is a set M equipped with a distance function d : M x M — satisfying



1. d(x,y) > 0 with “=" iff x =y (positivity)
2. d(z,) = d(y,z) (symmetry)
3. d(z,z) <d(z,y) +d(y,z) (triangle inequality )

Vr,y,z € M.

Ezxample: ™ with Euclidean distance

d(.’L‘,y) - \/(331 - 91)2 +ot (xn - yn)2

Properties 1 and 2 are obvious. The proof of property 3 will be a consequence of a general theorem
proved later.

Ezample: C|[a,b] with distance

b
d(f.g) = / (@) - g()|da

All three properties are easy to verify.

1.3 Normed Spaces

Definition 3 A normed space (or Banach space) is a vector space V' over equipped with a norm
||| : v— satisfying:

1. ||z|| > 0 with “=”iff x = 0 (positivity)
2. ||lax| = |a| - ||z]] (homogeneity)

3. lz+yll < [lz|| + [lyll (triangle inequality)

Ve,yeV,ac.

Exzample: ™ is a normed space with the Euclidean norm

lz] = \/22 + ...+ 22

This norm is related to the Euclidean distance by d(z,y) = |x — y|.
A norm measures length.

Remark: If V is a normed space, then it has a metric structure induced by the norm

d(z,y) = ||z =yl



e positivity: d(z,y) = ||z —y| >0
e homogeneity = symmetry:
dz,y) = [z—yll ==y -2

| = 1] lly — ]l
ly — =[] = d(y, z)

e triangle inequality:
d(z,z) = o=zl =z -y)+ (-2
< o=yl +lly — =l
= d(z,y) +d(y, 2)
1.3.1 Other norms on "
o [[zllv=3"7_1 |zl ([lz —yllr is the “taxi-cab distance” between z and y)
n 2\ P
o lelly = (X fal) 1< p <o

o [[llsup = max;{[z;[}

It is non-trivial to prove the triangle inequality for ||z||, when p # 1,2. The proof for p = 2 follows
from the Cauchy-Schwartz Inequality below. The sup-norm can be considered the case “p = c0”:
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If |zi| = max; |z;| = ||z||sup, then |z;|?/|zy|P — 0 or 1, so

|1 [P |n P
] R
] vk |P |k [P

1/p
)" faul L4+ 1P =

In fact, the sup-norm is sometimes denoted ||z oo-

|zl = 1 square
|zl = 1 circle
lzli = 1 diamond

Ezample: Cla,b] is a vector space over (dim = o). It is also a normed space with either

o [|fllsup = sup{[f(2)[ | = € [a, 0]}



/
o 17l = (f1f@Pdr) " 1< p < o0

The same remarks apply to || f||, as apply to ||z||, above.

1.4 Inner Product Spaces

Definition 4 An inner product space (or Hilbert space) is a vector space V' over with a function
o 2V XV — satisfying

1. z,x >0 with “=" iff v = 0 (positive definite)
2. x,y =y,xr (symmetry)

3. ar +by,z = ax,y + by, z (bilinear)

Va,be, x,y,z€ V.

Example: An inner product on ™ can be defined by

T,Y =T1y1+ - Tp¥n

This inner product is often written x - y and called the dot product. It is related to the angle 6
between z and y by the formula

z -y = |x[|y| cos(f)
We can demonstrate this for n = 2 using the addition formulas for sine and cosine. If z =
(rcos(a),rsin(a)) and y = (Rcos(B), Rsin(f)), where r = |z| and R = |y|, then
z-y = rR(cos(a)cos(f) + sin(a)sin(f))
= rRcos(f — )
] [y cos(0)

In ™ it is clear that the dot product is related to the Euclidean norm: |z| = y/z - z. This is a special
case of a general fact: an inner product -,- always defines a norm by ||z|| = \/z,z. To prove this
we need the following important theorem.

Theorem 1 (Cauchy-Schwartz Inequality) IfV is a vector space over with inner product -, -,

then
lz,y| < VT2 \/Y,y
with “="iff x and y are collinear (i.e., x = cy or y = cx for some c €).



rz+y,z+y >0and x —y,x —y > 0 so using bilinearity,

r,r +2z,y +y,y >0 = —x,¥y S%(%ﬂf +4,9)
r,x —2z,y +y,y >0 = T,y 35(%13 +9,y)
Therefore,
1
\x,y|§§(x,x +v,9) (1)
Now write

r=a-u where a=,z,z, u=a'-x
y=b-v where b= y,y, v=>b"l.y

(We may assume z # 0 and y # 0 for otherwise the theorem is trivial.)

Note that u,u = a 2z,2 =1 and v,v = b~2y,y = 1. Using bilinearity and applying (??) to u
and v, we get
lz,y| = |au,bv|= ablu,v|
< ab%(u,u +ov,v) = ab%(l +1)=ab
= VETVIT

(14

To prove the last assertion of the theorem, assume “=” holds. Then |u,v | = 1, where u and v
are as above. If u,v =1, then u —v,u —v = u,u — 2u,v +v,v = 0, while if u,v = —1, then
u+v,u+v =uu +2u,v +v,v =0. In either case we get u = +v and hence z = +ab™'y.

Corollary 2

”“ ”21/2”21/2
Sl < (354) " (50)

=1

Corollary 3
| /abf(w)g(x) da| < (/b If(x)|2dx>l/2(/ab ]g(x)|2dx)l/2
f,g = fab f(z)g(z) dx is an inner product on Cla, b].

Theorem 4 If -,- is an inner product on V', then for x € V
2]l = v,z

1S a norm.



Positivity: ||z| = /z,z >0

Homogeneity: |az|| = \/az,ax = \/a?z,z = |a| - ||z
Triangle inequality:

lz+yl? = z+y,c+y =z, +22,9 +5,y

[2)1? + 22,y + [[yl?

] + 2[|z[| [lyl| + [ly|I*  [Cauchy-Schwartz]
(]l + lyl)?

IN

Therefore, |z +y|| < ||z]| + ||y]|.

The triangle inequality for the usual Euclidean distance also follows this theorem.

1.5 Complex Case

Inner products and norms can be defined on vector spaces over , but definitions must be modified.

Definition 5 A hermitian inner product, -,- : V x V —, satisfies
1. xz,x € and x,x > 0 with “=" iff x = 0.
2. ¢,y =7Y,x

3. ax +by,z =ax,z +by,z and z,ax +by,z =az,x +bz,y

Vz,y,z €V, a,b €.

A norm can be defined by ||z|| = \/z, = which satisfies ||az|| = |a|-||z| where |a| = va - @. Moreover
the Cauchy-Schwartz inequality holds, |x,y | < ||z| - ||y||, which implies the triangle inequality for
the norm. Proofs are omitted.



