1 Structures on Euclidean Space

Euclidean space is the set of ordered n-tuples of real numbers,

$$
{ }^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in\right\}
$$

In this section we shall examine various "structures" on ${ }^{n}$:

- vector space
- metric space
- normed space (Banach space)
- inner product space (Hilbert space)

1.1 Vector Spaces

Definition $1 A$ vector space over a field is a set V equipped with two operations:

Vector Addition $\forall v, w \in V, \exists v+w \in V$; commutative, associative, identity element (0), and inverses exist $(v+(-v)=0)$.

Scalar Multiplication $\forall a \in, v \in V, \exists a \cdot v \in V$; associative and distributive.

Example: Euclidean space becomes a vector space by defining addition and scalar multiplication by

$$
\begin{aligned}
x+y & =\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
a x & =\left(a x_{1}, \ldots, a x_{n}\right)
\end{aligned}
$$

for $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in^{n}$ and $a \in$.
A standard basis for ${ }^{n}$ is $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$. Thus $x \in^{n}$ can be written $x=x_{1} e_{1}+\ldots+x_{n} e_{n}$. The dimension of ${ }^{n}$ is $\operatorname{dim}^{n}=n$, but a vector space can have infinite dimension.

Example: $V=C[a, b]$ with normal addition of functions and scalar multiplication is an infinite dimensional vector space over .

1.2 Metric Spaces

Definition $2 A$ metric space is a set M equipped with a distance function $d: M \times M \rightarrow$ satisfying

1. $d(x, y) \geq 0$ with " $="$ iff $x=y$ (positivity)
2. $d(x, y)=d(y, x)$ (symmetry)
3. $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)
$\forall x, y, z \in M$.

Example: ${ }^{n}$ with Euclidean distance

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

Properties 1 and 2 are obvious. The proof of property 3 will be a consequence of a general theorem proved later.

Example: $C[a, b]$ with distance

$$
d(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
$$

All three properties are easy to verify.

1.3 Normed Spaces

Definition 3 A normed space (or Banach space) is a vector space V over equipped with a norm $\|\cdot\|: v \rightarrow$ satisfying:

1. $\|x\| \geq 0$ with "=" iff $x=0$ (positivity)
2. $\|a x\|=|a| \cdot\|x\|$ (homogeneity)
3. $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
$\forall x, y \in V, a \in$.

Example: ${ }^{n}$ is a normed space with the Euclidean norm

$$
|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

This norm is related to the Euclidean distance by $d(x, y)=|x-y|$.
A norm measures length.
Remark: If V is a normed space, then it has a metric structure induced by the norm

$$
d(x, y)=\|x-y\|
$$

- positivity: $d(x, y)=\|x-y\| \geq 0$
- homogeneity \Rightarrow symmetry:

$$
\begin{aligned}
d(x, y) & =\|x-y\|=\|(-1)(y-x)\| \\
& =|-1| \cdot\|y-x\| \\
& =\|y-x\|=d(y, x)
\end{aligned}
$$

- triangle inequality:

$$
\begin{aligned}
d(x, z) & =\|x-z\|=\|(x-y)+(y-z)\| \\
& \leq\|x-y\|+\|y-z\| \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

1.3.1 Other norms on ${ }^{n}$

- $\|x\|_{1}=\sum_{j=1}^{n}\left|x_{i}\right| \quad\left(\|x-y\|_{1}\right.$ is the "taxi-cab distance" between x and $\left.y\right)$
- $\|x\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}, 1 \leq p<\infty$
- $\|x\|_{\text {sup }}=\max _{j}\left\{\left|x_{j}\right|\right\}$

It is non-trivial to prove the triangle inequality for $\|x\|_{p}$ when $p \neq 1,2$. The proof for $p=2$ follows from the Cauchy-Schwartz Inequality below. The sup-norm can be considered the case " $p=\infty$ ":

$$
\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}=\left|x_{k}\right|\left(\frac{\left|x_{1}\right|^{p}}{\left|x_{k}\right|^{p}}+\cdots+1+\cdots+\frac{\left|x_{n}\right|^{p}}{\left|x_{k}\right|^{p}}\right)^{1 / p}
$$

If $\left|x_{k}\right|=\max _{j}\left|x_{j}\right|=\|x\|_{\text {sup }}$, then $\left|x_{j}\right|^{p} /\left|x_{k}\right|^{p} \rightarrow 0$ or 1 , so

$$
\left|x_{k}\right|\left(\frac{\left|x_{1}\right|^{p}}{\left|x_{k}\right|^{p}}+\cdots+1+\cdots+\frac{\left|x_{n}\right|^{p}}{\left|x_{k}\right|^{p}}\right)^{1 / p} \rightarrow\left|x_{k}\right|(1+\cdots+1)^{0}=\|x\|_{\text {sup }}
$$

In fact, the sup-norm is sometimes denoted $\|x\|_{\infty}$.

$$
\begin{array}{ll}
\|x\|_{\infty}=1 & \text { square } \\
\|x\|_{2}=1 & \text { circle } \\
\|x\|_{1}=1 & \text { diamond }
\end{array}
$$

Example: $C[a, b]$ is a vector space over $(\operatorname{dim}=\infty)$. It is also a normed space with either

- $\|f\|_{\text {sup }}=\sup \{|f(x)| \mid x \in[a, b]\}$
- $\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}, 1 \leq p<\infty$

The same remarks apply to $\|f\|_{p}$ as apply to $\|x\|_{p}$ above.

1.4 Inner Product Spaces

Definition $4 A n$ inner product space (or Hilbert space) is a vector space V over with a function $\cdot,: V \times V \rightarrow$ satisfying

1. $x, x \geq 0$ with " $=$ " iff $x=0$ (positive definite)
2. $x, y=y, x$ (symmetry)
3. $a x+b y, z=a x, y+b y, z$ (bilinear)
$\forall a, b \in, x, y, z \in V$.

Example: An inner product on ${ }^{n}$ can be defined by

$$
x, y=x_{1} y_{1}+\cdots x_{n} y_{n}
$$

This inner product is often written $x \cdot y$ and called the dot product. It is related to the angle θ between x and y by the formula

$$
x \cdot y=|x||y| \cos (\theta)
$$

We can demonstrate this for $n=2$ using the addition formulas for sine and cosine. If $x=$ $(r \cos (\alpha), r \sin (\alpha))$ and $y=(R \cos (\beta), R \sin (\beta))$, where $r=|x|$ and $R=|y|$, then

$$
\begin{aligned}
x \cdot y & =r R(\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)) \\
& =r R \cos (\beta-\alpha) \\
& =|x||y| \cos (\theta)
\end{aligned}
$$

In ${ }^{n}$ it is clear that the dot product is related to the Euclidean norm: $|x|=\sqrt{x \cdot x}$. This is a special case of a general fact: an inner product \cdot, . always defines a norm by $\|x\|=\sqrt{x, x}$. To prove this we need the following important theorem.

Theorem 1 (Cauchy-Schwartz Inequality) If V is a vector space over with inner product \cdot, \cdot, then

$$
|x, y| \leq \sqrt{x, x} \sqrt{y, y}
$$

with " $=$ "iff x and y are collinear (i.e., $x=c y$ or $y=c x$ for some $c \in$).
$x+y, x+y \geq 0$ and $x-y, x-y \geq 0$ so using bilinearity,

$$
\begin{aligned}
& x, x+2 x, y+y, y \geq 0 \Rightarrow-x, y \quad \leq \frac{1}{2}(x, x+y, y) \\
& x, x-2 x, y+y, y \geq 0 \Rightarrow \quad x, y \quad \leq \frac{1}{2}(x, x+y, y)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
|x, y| \leq \frac{1}{2}(x, x+y, y) \tag{1}
\end{equation*}
$$

Now write

$$
\begin{array}{llll}
x=a \cdot u & \text { where } & a=\sqrt{x, x}, & u=a^{-1} \cdot x \\
y=b \cdot v & \text { where } & b=\sqrt{y, y}, & v=b^{-1} \cdot y
\end{array}
$$

(We may assume $x \neq 0$ and $y \neq 0$ for otherwise the theorem is trivial.)
Note that $u, u=a^{-2} x, x=1$ and $v, v=b^{-2} y, y=1$. Using bilinearity and applying (??) to u and v, we get

$$
\begin{aligned}
|x, y| & =|a u, b v|=a b|u, v| \\
& \leq a b \frac{1}{2}(u, u+v, v)=a b \frac{1}{2}(1+1)=a b \\
& =\sqrt{x, x} \sqrt{y, y}
\end{aligned}
$$

To prove the last assertion of the theorem, assume " $=$ " holds. Then $|u, v|=1$, where u and v are as above. If $u, v=1$, then $u-v, u-v=u, u-2 u, v+v, v=0$, while if $u, v=-1$, then $u+v, u+v=u, u+2 u, v+v, v=0$. In either case we get $u= \pm v$ and hence $x= \pm a b^{-1} y$.

Corollary 2

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

Corollary 3

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2}\left(\int_{a}^{b}|g(x)|^{2} d x\right)^{1 / 2}
$$

$f, g=\int_{a}^{b} f(x) g(x) d x$ is an inner product on $C[a, b]$.

Theorem 4 If \cdot, . is an inner product on V, then for $x \in V$

$$
\|x\|=\sqrt{x, x}
$$

is a norm.

Positivity: $\|x\|=\sqrt{x, x} \geq 0$
Homogeneity: $\|a x\|=\sqrt{a x, a x}=\sqrt{a^{2} x, x}=|a| \cdot\|x\|$
Triangle inequality:

$$
\begin{aligned}
\|x+y\|^{2} & =x+y, x+y=x, x+2 x, y+y, y \\
& =\|x\|^{2}+2 x, y+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \quad \text { [Cauchy-Schwartz] } \\
& =(\|x\|+\|y\|)^{2}
\end{aligned}
$$

Therefore, $\|x+y\| \leq\|x\|+\|y\|$.
The triangle inequality for the usual Euclidean distance also follows this theorem.

1.5 Complex Case

Inner products and norms can be defined on vector spaces over, but definitions must be modified.

Definition $5 A$ hermitian inner product, $, \cdot: V \times V \rightarrow$, satisfies

1. $x, x \in$ and $x, x \geq 0$ with " $=$ " iff $x=0$.
2. $x, y=\overline{y, x}$
3. $a x+b y, z=a x, z+b y, z$ and $z, a x+b y, z=\bar{a} z, x+\bar{b} z, y$
$\forall x, y, z \in V, a, b \in$.

A norm can be defined by $\|x\|=\sqrt{x, x}$ which satisfies $\|a x\|=|a| \cdot\|x\|$ where $|a|=\sqrt{a \cdot \bar{a}}$. Moreover the Cauchy-Schwartz inequality holds, $|x, y| \leq\|x\| \cdot\|y\|$, which implies the triangle inequality for the norm. Proofs are omitted.

