
1 Structures on Euclidean Space

Euclidean space is the set of ordered n-tuples of real numbers,

n = {(x1, . . . , xn) | xi ∈}

In this section we shall examine various “structures” on n:

• vector space

• metric space

• normed space (Banach space)

• inner product space (Hilbert space)

1.1 Vector Spaces

Definition 1 A vector space over a field is a set V equipped with two operations:

Vector Addition ∀ v, w ∈ V , ∃ v + w ∈ V ; commutative, associative, identity element (0), and
inverses exist (v + (−v) = 0).

Scalar Multiplication ∀ a ∈, v ∈ V , ∃ a · v ∈ V ; associative and distributive.

Example: Euclidean space becomes a vector space by defining addition and scalar multiplication
by

x + y = (x1 + y1, . . . , xn + yn)
ax = (ax1, . . . , axn)

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈n and a ∈.

A standard basis for n is e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). Thus x ∈n

can be written x = x1e1 + . . .+xnen. The dimension of n is dimn = n, but a vector space can have
infinite dimension.

Example: V = C[a, b] with normal addition of functions and scalar multiplication is an infinite
dimensional vector space over .

1.2 Metric Spaces

Definition 2 A metric space is a set M equipped with a distance function d : M ×M → satisfying
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1. d(x, y) ≥ 0 with “=” iff x = y (positivity)

2. d(x, y) = d(y, x) ( symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) ( triangle inequality)

∀x, y, z ∈ M .

Example: n with Euclidean distance

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

Properties 1 and 2 are obvious. The proof of property 3 will be a consequence of a general theorem
proved later.

Example: C[a, b] with distance

d(f, g) =
∫ b

a
|f(x)− g(x)| dx

All three properties are easy to verify.

1.3 Normed Spaces

Definition 3 A normed space (or Banach space) is a vector space V over equipped with a norm
‖ · ‖ : v → satisfying:

1. ‖x‖ ≥ 0 with “=” iff x = 0 (positivity)

2. ‖ax‖ = |a| · ‖x‖ (homogeneity)

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ ( triangle inequality)

∀x, y ∈ V , a ∈.

Example: n is a normed space with the Euclidean norm

|x| =
√

x2
1 + . . . + x2

n

This norm is related to the Euclidean distance by d(x, y) = |x− y|.

A norm measures length.

Remark: If V is a normed space, then it has a metric structure induced by the norm

d(x, y) = ‖x− y‖
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• positivity: d(x, y) = ‖x− y‖ ≥ 0

• homogeneity ⇒ symmetry:

d(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖
= | − 1| · ‖y − x‖
= ‖y − x‖ = d(y, x)

• triangle inequality:

d(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖
≤ ‖x− y‖+ ‖y − z‖
= d(x, y) + d(y, z)

1.3.1 Other norms on n

• ‖x‖1 =
∑n

j=1 |xi| (‖x− y‖1 is the “taxi-cab distance” between x and y)

• ‖x‖p =
( ∑n

j=1 |xj |p
)1/p

, 1 ≤ p < ∞

• ‖x‖sup = maxj{|xj |}

It is non-trivial to prove the triangle inequality for ‖x‖p when p 6= 1, 2. The proof for p = 2 follows
from the Cauchy-Schwartz Inequality below. The sup-norm can be considered the case “p = ∞”:( n∑

j=1

|xj |p
)1/p

= |xk|
( |x1|p

|xk|p
+ · · ·+ 1 + · · ·+ |xn|p

|xk|p
)1/p

If |xk| = maxj |xj | = ‖x‖sup, then |xj |p/|xk|p → 0 or 1, so

|xk|
( |x1|p

|xk|p
+ · · ·+ 1 + · · ·+ |xn|p

|xk|p
)1/p

→ |xk|(1 + · · ·+ 1)0 = ‖x‖sup

In fact, the sup-norm is sometimes denoted ‖x‖∞.

‖x‖∞ = 1 square
‖x‖2 = 1 circle
‖x‖1 = 1 diamond

Example: C[a, b] is a vector space over (dim = ∞). It is also a normed space with either

• ‖f‖sup = sup{|f(x)| | x ∈ [a, b]}
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• ‖f‖p = (
∫ b
a |f(x)|p dx

)1/p
, 1 ≤ p < ∞

The same remarks apply to ‖f‖p as apply to ‖x‖p above.

1.4 Inner Product Spaces

Definition 4 An inner product space (or Hilbert space) is a vector space V over with a function
·, · : V × V → satisfying

1. x, x ≥ 0 with “=” iff x = 0 (positive definite)

2. x, y = y, x ( symmetry)

3. ax + by, z = ax, y + by, z (bilinear)

∀ a, b ∈, x, y, z ∈ V .

Example: An inner product on n can be defined by

x, y = x1y1 + · · ·xnyn

This inner product is often written x · y and called the dot product. It is related to the angle θ
between x and y by the formula

x · y = |x| |y| cos(θ)

We can demonstrate this for n = 2 using the addition formulas for sine and cosine. If x =
(r cos(α), r sin(α)) and y = (R cos(β), R sin(β)), where r = |x| and R = |y|, then

x · y = rR(cos(α) cos(β) + sin(α) sin(β))
= rR cos(β − α)
= |x| |y| cos(θ)

In n it is clear that the dot product is related to the Euclidean norm: |x| =
√

x · x. This is a special
case of a general fact: an inner product ·, · always defines a norm by ‖x‖ =

√
x, x . To prove this

we need the following important theorem.

Theorem 1 (Cauchy-Schwartz Inequality) If V is a vector space over with inner product ·, · ,
then

|x, y | ≤ √
x, x

√
y, y

with “=” iff x and y are collinear (i.e., x = cy or y = cx for some c ∈).

4



x + y, x + y ≥ 0 and x− y, x− y ≥ 0 so using bilinearity,

x, x + 2x, y + y, y ≥ 0 ⇒ −x, y ≤ 1
2(x, x + y, y )

x, x − 2x, y + y, y ≥ 0 ⇒ x, y ≤ 1
2(x, x + y, y )

Therefore,

|x, y | ≤ 1
2
(x, x + y, y ) (1)

Now write
x = a · u where a =

√
x, x , u = a−1 · x

y = b · v where b =
√

y, y , v = b−1 · y

(We may assume x 6= 0 and y 6= 0 for otherwise the theorem is trivial.)

Note that u, u = a−2x, x = 1 and v, v = b−2y, y = 1. Using bilinearity and applying (??) to u
and v, we get

|x, y | = |au, bv | = ab|u, v |

≤ ab
1
2
(u, u + v, v ) = ab

1
2
(1 + 1) = ab

=
√

x, x
√

y, y

To prove the last assertion of the theorem, assume “=” holds. Then |u, v | = 1, where u and v
are as above. If u, v = 1, then u − v, u − v = u, u − 2u, v + v, v = 0, while if u, v = −1, then
u + v, u + v = u, u + 2u, v + v, v = 0. In either case we get u = ±v and hence x = ±ab−1y.

Corollary 2 ∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ ( n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

Corollary 3 ∣∣∣ ∫ b

a
f(x)g(x) dx

∣∣∣ ≤ ( ∫ b

a
|f(x)|2 dx

)1/2( ∫ b

a
|g(x)|2 dx

)1/2

f, g =
∫ b
a f(x)g(x) dx is an inner product on C[a, b].

Theorem 4 If ·, · is an inner product on V , then for x ∈ V

‖x‖ =
√

x, x

is a norm.
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Positivity: ‖x‖ =
√

x, x ≥ 0

Homogeneity: ‖ax‖ =
√

ax, ax =
√

a2x, x = |a| · ‖x‖

Triangle inequality:

‖x + y‖2 = x + y, x + y = x, x + 2x, y + y, y

= ‖x‖2 + 2x, y + ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 [Cauchy-Schwartz]
= (‖x‖+ ‖y‖)2

Therefore, ‖x + y‖ ≤ ‖x‖+ ‖y‖.

The triangle inequality for the usual Euclidean distance also follows this theorem.

1.5 Complex Case

Inner products and norms can be defined on vector spaces over , but definitions must be modified.

Definition 5 A hermitian inner product, ·, · : V × V →, satisfies

1. x, x ∈ and x, x ≥ 0 with “=” iff x = 0.

2. x, y = y, x

3. ax + by, z = ax, z + by, z and z, ax + by, z = az, x + bz, y

∀x, y, z ∈ V , a, b ∈.

A norm can be defined by ‖x‖ =
√

x, x which satisfies ‖ax‖ = |a|·‖x‖ where |a| =
√

a · a. Moreover
the Cauchy-Schwartz inequality holds, |x, y | ≤ ‖x‖ · ‖y‖, which implies the triangle inequality for
the norm. Proofs are omitted.
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