
1 Existence and Uniqueness of Solutions

1.1 Systems of Ordinary Differential Equations

Let x : [a.b] →n be a vector function defined on an interval of real numbers. Denote by x(m)(t) the
m-th derivative of x(t) with respect to t. Suppose G : [a, b] × D →n is a continuous function for
some open subset D ⊂nm. An equation of the form

x(m)(t) = G(t, x(t), x′(t), . . . , x(m−1)(t))

is called a system of ordinary differential equations of order m.

By increasing the number of unknowns and equations, any m-th order system can be written as a
first order system, as follows. Define

v1(t) = x(t), v2(t) = x′(t), . . . , vm(t) = x(m−1)(t)

Then the equivalent first order system is given by the equations

v′1(t) = v2(t), v′2(t) = v3(t), . . . , v′m−1(t) = vm(t),
v′m(t) = G(t, v1(t), . . . , vm(t))

or more compactly as
v′(t) = H(t, v(t))

where v : [a, b] →nm is v(t) = (v1(t), . . . , vm(t)) and H : [a, b]×D →nm is H(t, v(t)) = (v2(t), . . . , vm(t), G(t, v1(t), . . . , vm(t))).

Example: Consider the spring-mass system shown below. The two masses move on a frictionless
surface under the influence of external forces F1(t) and F2(t) and they are also constrained by the
three springs whose constants are k1, k2, and k3.

From Newton’s law of motion and Hooke’s law for springs, we obtain the following equations for
the coordinates x1 and x2 of the two masses

m1x
′′
1(t) = −k1x1(t) + k2(x2(t)− x1(t)) + F1(t)

m2x
′′
2(t) = −k3x2(t)− k2(x2(t)− x1(t)) + F2(t)

To put this in vector form, x′′(t) = G(t, x(t), x′(t)), we let

x(t) =
[

x1(t)
x2(t)

]
and

G(t, x(t), x′(t)) =
[

(k2x2(t)− (k1 + k2)x1(t) + F1(t))/m1

(k2x1(t)− (k2 + k3)x2(t) + F2(t))/m2

]
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The equivalent first order system is v′(t) = H(t, v(t)), where

v(t) =


v11(t)
v12(t)
v21(t)
v22(t)

 =


x1(t)
x2(t)
x′1(t)
x′2(t)


and

H(t, v(t)) =


v21

v22

(k2v12(t)− (k1 + k2)v11(t) + F1(t))/m1

(k2v11(t)− (k2 + k3)v12(t) + F2(t))/m2


The process of solving a differential equation is essentially a form of integration and always involves
undetermined constants as part of the answer. In order to get a unique solution we must impose
extra conditions that determine the value of these constants. Typically initial conditions are spec-
ified, that is, a solution to x′(t) = G(t, x(t)) must satisfy x(t0) = x0 for some given t0 ∈ [a, b]
and x0 ∈ D. A system of differential equations with an initial condition is called an initial value
problem.

We shall prove, under mild assumptions about the function G, that the solution to an initial value
problem always exists and is unique. Our proof is based on the Contractive Mapping Principle
which requires converting the initial value problem into an equivalent integral equation, then using
the integral equation to define a contractive mapping of a certain complete metric space into itself.
The solution will be the fixed point of the contractive mapping.

1.2 Integral Equations

We say that a function f is Ck if f has continuous derivatives up to order k. We write Ck(D) to
denote the vector space of Ck functions with common domain D. We sometimes need to specify a
common range as well, so we let Ck(D,E) denote the set of Ck functions f : D → E.

For example, Ck([a, b],n ) denotes the vector space of continuous vector functions f : [a, b] →n that
have k continuous derivatives. Since derivatives of vector functions are taken component-wise, it
follows that

Ck([a, b], Rn) ∼= Ck[a, b]× · · · × Ck[a, b] (n times)

The translation of an initial value problem to an integral equation follows immediately from the
Fundamental Theorem of Calculus for vector functions.

Let G : [a, b] ×D →n be a continuous function defined on some neighborhood of (t0, x0) ∈ ×n. If
x(t) : [a, b] →n is C1 and x(t) satisfies the initial value problem

x′(t) = G(t, x(t)), x(t0) = x0 (1)
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then x(t) satisfies the integral equation

x(t) = x0 +
∫ t

t0

G(s, x(s)) ds (2)

Conversely, if x(t) : [a, b] →n is continuous and x(t) satisfies (??), then x(t) is C1 and x(t) satis-
fies (??).

The first statement follows by integrating the differential equation to get

x(t)− x(t0) =
∫ t

t0

x′(s) ds =
∫ t

t0

G(s, x(s)) ds

The second statement follows by differentiating the integral equation to get

d

dt
x(t) =

d

dt

(
x0 +

∫ t

t0

G(s, x(s)) ds
)

= G(t, x(t))

Notice that the integral equation has the initial condition “built-in.” Also, we need only assume
x(t) is continuous for the integral to exist, yet any solution of the integral equation gets “promoted”
to having a continuous derivative.

Now we describe the type of complete metric space on which we shall construct a contractive
mapping. The sup-norm on C([a, b],n ) is

‖f‖∞ = sup
x∈[a,b]

|f(x)|

where |f(x)| is the Euclidean norm of the vector f(x). Convergence with respect to this norm is
equivalent to component-wise convergence with respect to the sup-norm on C[a, b].

Let B be a closed subset of n. Then the metric space C([a, b], B) is complete with respect to the
sup-norm.

Let {fj} ⊂ C([a, b], B) be a Cauchy sequence. Then ‖fj − fk‖∞ → 0 implies ‖fji − fki‖∞ → 0
where fji are the components of fj = (fj1, . . . , fjn), and hence {fji} ⊂ C[a, b] is a Cauchy sequence
for each i = 1, . . . , n. Since C[a, b] is complete by Theorem ??, fji → fi ∈ C[a, b], so fj → f =
(f1, . . . , fn) ∈ C([a, b],n ). Finally, Since B is closed, f(x) = lim fj(x) ∈ B, so f ∈ C([a, b], B).

The next two lemmas take care of some technical details. The first is an extension of a standard
inequality for continuous functions, to continuous vector functions.

[Minkowski’s Inequality] If v : [a, b] →n is a continuous function, then∣∣∣ ∫ b

a
v(s) ds

∣∣∣ ≤ ∫ b

a
|v(s)| ds
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The statement follows from the triangle inequality for the Euclidean metric. Integration of a vector
function is done component-wise,∫ b

a
v(s) ds =

( ∫ b

a
v1(s) ds, . . . ,

∫ b

a
vn(s) ds

)
and for each component∫ b

a
vi(s) ds = sup

{∫ b

a
ti(s) ds

∣∣∣ ti (step fn) ≤ vi

}
= lim

j→∞

∫ b

a
tij(s) ds

for some sequence {tij} of step functions ≤ vi. Recall that the integral of a step function is a finite
sum, ∫ b

a
tij(s) ds =

∑
k

tij(sk)∆sk

Therefore, by using a common refinement for the partitions of the step functions t1j , . . . , tnj , for
each j, we get ∣∣∣ ∫ b

a
v(s) ds

∣∣∣ = lim
j→∞

∣∣∣ ∑
k

(t1j(sk), . . . , tnj(sk))∆sk

∣∣∣
≤ lim

j→∞

∑
k

|(t1j(sk), . . . , tnj(sk))|∆sk [T.I.]

≤ sup
{∫ b

a
u(s) ds

∣∣∣ u (step fn) ≤ |v|
}

=
∫ b

a
|v(s)| ds

Finally, we establish a crucial regularity property of G that follows from the continuity of the
derivatives of G.

[Lipschitz Condition] Let D be open an open subset of n and let G : [a, b]×D →n be a C1 function.
Then for any x0 ∈ D and any open ball B = B(x0, ε) such that B ⊂ D, there exists an M > 0 such
that

|G(t, x)−G(t, y)| ≤ M |x− y|, ∀ (t, x), (t, y) ∈ [a, b]×B

Let (t, x), (t, y) ∈ [a, b] × B be arbitrary. Since the ball B is convex, the line segment from x to y
is contained in B,

x + s(x− y) ∈ B, ∀ s ∈ [0, 1]

Consider the continuous function g : [0, 1] →n defined by

g(s) = G(t, x + s(y − x))

Then

G(t, y)−G(t, x) = g(1)− g(0) =
∫ 1

0
g′(s) ds
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By the Chain Rule,

g′(s) =
n∑

k=1

(yk − xk)
∂G

∂xk
(t, x + s(y − x))

Let m be the maximum of all the continuous functions |∂G/∂xk|, k = 1, . . . , n, on the compact set
[a, b]×B and let M = m · n. Then

|G(t, y)−G(t, x)| =
∣∣∣ ∫ 1

0
g′(s) ds

∣∣∣
≤

∫ 1

0
|g′(s)| ds [Lemma ??]

≤
n∑

k=1

|yk − xk|
∫ 1

0

∣∣∣ ∂G

∂xk
(t, x + s(y − x))

∣∣∣ ds

≤ m
n∑

k=1

|yk − xk|

≤ m · n · ‖y − x‖∞
≤ M · |x− y|

1.3 Existence and Uniqueness of Solutions

Now we come to the proof of the existence and uniqueness of a solution to an initial value problem.
The basic idea is to show that the mapping of continuous vector functions defined by Tx(t) =
x0+

∫ t
t0

G(s, x(s)) ds is, under certain restrictions, a contractive mapping. The Contractive Mapping
Principle implies that T has a unique fixed point, say Tφ(t) = φ(t). The function φ(t) then satisfies
the integral equation φ(t) = Tφ(t) = x0 +

∫ t
t0

G(s, φ(s)) ds, and therefore the initial value problem
φ′(t) = G(t, φ(t)), φ(t0) = x0.

Theorem 1 (Existence and Uniqueness) Let G : [a, b] × D →n be a C1 function defined on
some neighborhood of (t0, x0) ∈ ×n. Then there is a subinterval [c, d] ⊂ [a, b] containing t0 such
that the initial value problem

x′(t) = G(t, x(t)), x(t0) = x0

has a unique solution defined on the interval [c, d].

Let B = B(x0, ε) be such that B ⊂ D. By Lemma ??, ∃M > 0 such that

|G(t, x)−G(t, y)| ≤ M |x− y|, ∀ (t, x), (t, y) ∈ [a, b]×B

Let ‖G‖∞ be the maximum of |G(t, x)| on [a, b] × B. Fix 0 < r < 1 and let [c, d] be the interval
[t0 − ε0, t0 + ε0] where

ε0 = min{ε/‖G‖∞, r/M}
For a continuous function x : [c, d] → B define

Tx(t) = x0 +
∫ t

t0

G(s, x(s)) ds
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Then

|Tx(t)− x0| =
∣∣∣ ∫ t

t0

G(s, x(s)) ds
∣∣∣ ≤ ‖G‖∞|t− t0| ≤ ε

since |t − t0| ≤ ε0 ≤ ε/‖G‖∞. Thus, Tx : [c, d] → B showing that T is a mapping of the metric
space C([c, d], B) into itself. Moreover, by Lemma ??, C([c, d], B) with the sup-norm is a complete
metric space.

We now show that T is a contractive mapping. If x, y ∈ C([c, d], B) then

‖Tx− Ty‖∞ =
∣∣∣∣∣∣x0 +

∫ t

t0

G(s, x(s)) ds− x0 −
∫ t

t0

G(s, y(s)) ds
∣∣∣∣∣∣
∞

= sup
t∈[c,d]

∣∣∣ ∫ t

t0

G(s, x(s))−G(s, y(s)) ds
∣∣∣

≤ sup
t∈[c,d]

∣∣∣ ∫ t

t0

|G(s, x(s))−G(s, y(s))| ds
∣∣∣ [Lemma ??]

≤ sup
t∈[c,d]

∣∣∣ ∫ t

t0

M |x(s)− y(s)| ds
∣∣∣ [Lemma ??]

≤ M‖x− y‖∞ sup
t∈[c,d]

|t− t0| = M‖x− y‖∞ε0

≤ r‖x− y‖∞

since ε0 ≤ r/M .

By the Contractive Mapping Principle, Theorem ??, T has a unique fixed point φ ∈ C([c, d], B).
Therefore, φ(t) is the unique solution of the integral equation

φ(t) = Tφ(t) = x0 +
∫ t

t0

G(s, φ(s)) ds

and hence, by Lemma ??, φ(t) is the unique solution of the initial value problem

φ′(t) = G(t, φ(t)), φ(t0) = x0

1.4 Picard Iteration

Let us apply the method of the previous proof to find a solution to the initial value problem

x′(t) = 2t(1 + x(t)), x(0) = 0

Here G(t, x) = 2t(1 + x) has continuous first derivatives and the Lipschitz Condition is easy to
determine. If |t| ≤ R, then

|G(t, x)−G(t, y)| = |2t + 2tx− 2t− 2ty| = 2|t| · |x− y| ≤ 2R|x− y|

So M = 2R independent of x and y. The maximum of G on [−R,R]× [−ε, ε] is

‖G‖∞ = sup |2t(1 + x)| = 2R(1 + ε)
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The proof of the theorem says that for some fixed 0 < r < 1 the mapping

Tx(t) = 0 +
∫ t

0
2s(1 + x(s)) ds

is contractive if we restrict t to the interval [−ε0, ε0] where

ε0 = min
{ ε

‖G‖∞
,

r

M

}
= min

{ ε

2R(1 + ε)
,

r

2R

}
<

1
2R

For the largest interval of t we should choose R = 1/
√

2.

The solution φ(t) of the initial value problem is the fixed point of T which can be found, according
to the Contractive Mapping Principle, by iterating the mapping T on any starting function φ0(t).
Let φ0(t) = 0 and for n ≥ 1 define recursively

φn(t) = Tφn−1(t) =
∫ t

0
2s(1 + φn−1(s)) ds

Then φn(t) = Tnφ0(t) and
φ(t) = lim

n→∞
Tnφ0(t) = lim

n→∞
φn(t)

We obtain

φ1(t) = Tφ0(t) =
∫ t

0
2s(1 + 0) ds = t2

φ2(t) = Tφ1(t) =
∫ t

0
2s(1 + s2) ds = t2 +

t4

2

φ3(t) = Tφ2(t) =
∫ t

0
2s(1 + s2 +

s4

2
) ds = t2 +

t4

2
+

t6

3 · 2

These equations suggest that

φn(t) = t2 +
t4

2!
+

t6

3!
+ · · ·+ t2n

n!

which can be proved by induction:

φn(t) =
∫ t

0
2s(1 + φn−1(s)) ds

=
∫ t

0
2s(1 + s2 + · · ·+ s2(n−1)

(n− 1)!

)
ds

= t2 +
t4

2!
+

t6

3!
+ · · ·+ t2n

n!

The solution to the initial value problem is thus

φ(t) = lim
n→∞

φn(t) =
∞∑

n=1

t2n

n!
= et2 − 1

After finding the limit we see that it converges for all t, and hence the solution is also valid for all t,
although the a priori restriction |t| ≤ 1/

√
2 is needed to invoke the Contractive Mapping Principle.
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1.5 Exercises

1. Consider the initial value problem

x′(t) + x(t)2 = 0, x(0) = x0 > 0

a) Show that x(t) = x0/(1 + x0t) is a solution for t > −1/x0.

b) The proof of Theorem ?? asserts that a solution exists on an interval [x0 − ε0, x0 + ε0]
where

ε0 = min
{ ε

‖G‖∞
,

r

M

}
Calculate ε0 for this equation and verify that x0 − ε0 > −1/x0.

2. Find two distinct solutions of the initial value problem

x′(t) = x(t)1/3, x(0) = 0

Explain how this is compatible with the uniqueness of solutions asserted by Theorem ??.

3. Use Picard Iteration (the Contractive Mapping Principle) to compute the solution of the
initial value problem

x′(t) = tx(t) + 1, x(0) = 0

a) Let φ0(t) = 0 and for n ≥ 1 compute recursively

φn(t) = Tφn−1(t) = 0 +
∫ t

0
(sφn−1(t) + 1) ds

b) Find φ(t) = limn→∞ φn(t).
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