
1 Implicit Functions

1.1 Examples of Implicit Functions

A function f : D →m is usually defined by giving some explicit formula to calculate f(x) ∈m for
each x ∈ D ⊂n. Functions can also be defined implicitly by a system of equations

F (x, y) = c

where F : D1 ×D2 →m is defined on some domain D1 ×D2 ⊂n ×m. Given x ∈ D1 ⊂n we “solve”
the system of equations for y = y(x) ∈ D2 ⊂m and in this way obtain a function y : D1 → D2. In
this section we shall examine conditions under which such an implicit function exists and is unique.
Let us start by looking at some examples.

1.1.1 Inverse Functions

The inverse of a function f is the function defined implicitly as the solution of the equation
F (x, y) = x − f(y) = 0. Solving for y gives the inverse function y = f−1(x). We know that
we can only expect a well-defined inverse function to exist on an interval where f is one-to-one.
If f is differentiable, such intervals can be found by checking where f ′(x) > 0 (or f ′(x) < 0).
For example, let f(x) = x1/x for x ≥ 0 (f(0) = limx→0 x1/x = limx→0 elog(x)/x = 0). Then
f ′(x) = x1/x(1 − log(x))/x2 > 0 for 0 < x < e and f ′(x) < 0 for x > e, so f has an inverse on
either of the intervals [0, e] or [e,∞). Finding a “formula” for the inverse by solving x − y1/y = 0
for y is difficult, even though we know y = y(x) exists as an abstract function of x. We could argue
that y = xy so substituting this equation into itself yields y = xxy

. Repeating this indefinitely, we
might conclude that

y = xxx..
.

The difficulty of solving equations explicitly underscores the importance of having criteria that
guarantee the existence and uniqueness of a solution.

1.1.2 Solutions to Exact Differential Equations

Recall that an exact differential equation is one of the form

dy

dx
= −M(x, y)

N(x, y)
(1)

where the functions M and N satisfy
∂M

∂y
=

∂N

∂x
(2)

Equation (??) is often written
M(x, y) dx + N(x, y) dy = 0 (3)
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To solve the differential equation we find a function F (x, y) such that

∂F

∂x
= M and

∂F

∂y
= N (4)

The conditions (??) guarantee that such an F exists, at least in some neighborhood of a given point
in the xy-plane. The conditions are certainly necessary, since if (??) holds then

∂M

∂y
=

∂2F

∂y∂x
=

∂2F

∂x∂y
=

∂N

∂x

Given the function F (x, y), (??) can be written

dF (x, y) =
∂F

∂x
dx +

∂F

∂y
dy = M(x, y) dx + N(x, y) dy = 0

and the solution of the differential equation is therefore the implicit solution y = y(x) of the
equation F (x, y) = c for some constant c.

Let us work out an example. The differential equation

(ex cos(y)− 2x) dx + (1− ex sin(y)) dy = 0

is exact since
∂

∂y
(ex cos(y)− 2x) = −ex sin(y) =

∂

∂x
(1− ex sin(y))

Integrating M(x, y) = ex cos(y)− 2x with respect to x gives the first information about F (x, y),

F (x, y) = ex cos(y)− x2 + g(y)

where g(y) is an unknown function of y (so ∂g(y)/∂x = 0). To determine g(y), compute Fy(x, y)
and set it equal to N(x, y) = 1− ex sin(y),

Fy(x, y) = −ex sin(y) + g′(y) = 1− ex sin(y)

which implies that g′(y) = 1 and hence g(y) = y. The solution of the differential equation is
therefore the function y = y(x) defined implicitly by the equation

F (x, y) = ex cos(y)− x2 + y = c

Below are some graphs of the implicit solutions (determined numerically) for various values of the
constant c.

1.1.3 Equations of Curves and Surfaces

We often describe a curve in the plane or a surface in space by an equation, F (x, y) = c or
F (x, y, z) = c, respectively. For example, the unit sphere is defined as the set of points satisfying
x2 + y2 + z2 = 1. The sphere is “two-dimensional” because there are two “degrees of freedom” on
the surface in the sense that any one variables can be thought of as a function of the other two.
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For example, z = ±
√

1− x2 − y2. This functional representation is less elegant than the single
equation and it also has exceptions and cases (we must choose the positive or negative square root,
and the representation does not work well at the points x2 + y2 = 1). It is often difficult if not
impossible to solve explicitly for one variable as a function of the other two in the equation for a
general surface. For example,

F (x, y, z) = 8(x2 + y2 + z2)− 8(x4 + y4 + z4) = c

Here are the surfaces corresponding to c = 2, 3, and 4:

The hand-drawn pictures were done as a homework assignment by a freshman, Cassidy Curtis, in
1988 at Brown University without the aid of a computer. For more on this story check out the
link “The Best Homework Ever?” at http://www.math.brown.edu/~banchoff/. It is difficult to
see why c = 2 gives a rounded cube with “dimpled” faces, c = 3 gives a surface with six “holes”
in it, and c = 4 gives a surface with 12 “singular points.” It would be useful to have some way of
understanding the surface analytically through its equation.

1.1.4 Systems of Equations

Implicit functions can also be vector-valued and defined by systems of equations. For example,
consider F :2 ×2 →2 defined by

F (x, y) = (x1 − y2
1 + y2

2, x2 − 2y1y2), x = (x1, x2), y = (y1, y2)

The system of equations F (x, y) = (c1, c2) is equivalent to

x1 = c1 + y2
1 − y2

2

x2 = c2 + 2y1y2

We can solve this system algebraically (substitute y2 = (x2 − c2)/(2y1) into the first equation) to
realize y as a function of x.

y1 = ±

√√
(x1 − c1)2 + (x2 − c2)2 + (x1 − c1)

2

y2 = ±

√√
(x1 − c1)2 + (x2 − c2)2 − (x1 − c1)

2

The Implicit Function Theorem is a tool for understanding implicitly defined functions. It provides
answers to questions raised by the above examples such as, When does an inverse function exist?
When are the solutions of an exact differential equation smooth curves? When do systems of
equations define smooth curves and surfaces?
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1.2 Implicit Function Theorem

One way to find an approximate solution to a system of equations F (x, y) = c is to “linearize”
the system. The linear transformation, let’s call it L(x, y) that best approximates F (x, y) =
(F1(x, y), . . . , Fm(x, y)) near (a, b) is

L(x, y) =(
Fi(a, b) +

n∑
j=1

∂Fi

∂xj
(a, b)(xj − aj) +

m∑
j=1

∂Fi

∂yj
(a, b)(yj − bj)

)
1≤i≤m

We can simplify this expression by using matrix operations,

L(x, y) = F (a, b) + Fx(a, b)(x− a) + Fy(a, b)(y − b)

where Fx(a, b) is the rectangular m× n matrix

Fx(a, b) =
[∂Fi

∂xj
(a, b)

]
1≤i≤m
1≤j≤n

and Fy(a, b) is the square m×m matrix

Fy(a, b) =
[∂Fi

∂yj
(a, b)

]
1≤i≤m
1≤j≤m

The linearized system of equations becomes L(x, y) = c or

F (a, b) + Fx(a, b)(x− a) + Fy(a, b)(y − b) = c

If we fix x = a, the corresponding solution for y is

y = b + Fy(a, b)−1(c− F (a, b)) (5)

Note that we must assume Fy(a, b) is invertible to solve for y. The solution to the linearized system
suggests a method of obtaining the general solution using the Contractive Mapping Principle.

Before we proceed we need to have the notion of a norm of a linear transformation L :n→m. We may
regard L as a rectangular n×m matrix and the transformation as given by matrix multiplication,
L · v ∈n for v ∈m. We define

‖L‖ = sup
v 6=0

|L · v|
|v|

= sup
v 6=0

∣∣∣L · v

|v|

∣∣∣ = sup
|u|=1

|L · u|

The supremum is taken over the compact unit sphere, |u| = 1, u ∈n, so it is a finite number. The
norm allows us to estimate

|L · v| ≤ ‖L‖ · |v|, ∀v ∈n (6)

We leave it as an exercise for the reader to verify that ‖L‖ is indeed a norm on the nm-dimensional
vector space of n×m matrices and that this norm fits between the sup-norm and the usual Euclidean
norm,

‖L‖∞ ≤ ‖L‖ ≤ |L|

(The nm entries of a matrix L = [Lij ] are the “components” of L as a vector so that ‖L‖∞ =
max |Lij | and |L| = (

∑
L2

ij)
1/2.)
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Theorem 1 (Implicit Function Theorem) Let F : D1 × D2 →m be a C1 function defined on
a neighborhood of (x0, y0) ∈n ×m, and let c = F (x0, y0). If Fy(x0, y0) is invertible, then there is a
neighborhood U of x0 and a C1 function y(x) : U → D2 such that

F (x, y(x)) = c, ∀x ∈ U

Furthermore, the function y(x) is unique in that there is a neighborhood V of b such that the only
solution of F (x, z) = c for z ∈ V is z = y(x). Finally, the differential of y(x) is given by implicit
differentiation as

dy(x) = −Fy(x, y(x))−1Fx(x, y(x))

For x ∈ D1 define T : D2 →m by

Ty = y + Fy(x0, y0)−1[c− F (x, y)]

(compare with equation (??)). Although T depends on x, we will not complicate the notation by
indicating this dependence.

The first step is to show that T is a contractive mapping when restricted to a suitable neighborhood
of y0. Before we begin we must set up some notation and a few constants. Let L(x, y) denote the
linear approximation to F (x, y) near (x0, y0),

L(x, y) = F (x0, y0) + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0)

The fact that L(x, y) approximates F (x, y) near (x0, y0) is expressed formally in a version of Taylor’s
Theorem for vector-valued functions which says that for any λ > 0, there is a neighborhood
B0 = B(x0, ε0)×B(y0, δ0) such that

|L(x, y)− F (x, y)| < λ(|x− x0|+ |y − y0|), ∀ (x, y) ∈ B0 (7)

Similarly, our assumption that F is C1 implies that Fy(x, y) is continuous in x and y, so for any
λ > 0 there is a neighborhood B1 = B(x0, ε1)×B(y0, δ1) such that

‖Fy(x, y)− Fy(x0, y0)‖ < λ, ∀ (x, y) ∈ B1

Let
M = ‖Fy(x0, y0)−1‖, N = ‖Fx(x0, y0)‖

and let B0, B1 be the neighborhoods given above when λ = 1/(4M). Let

δ = min{δ0, δ1}

ε = min {ε0, ε1,
δ

4MN + 1
}

and define B = B(x0, ε)×B(y0, δ). Then ∀ (x, y) ∈ B

|L(x, y)− F (x, y)| < 1
4M

(|x− x0|+ |y − y0|) <
1

4M
(ε + δ) (8)

‖Fy(x, y)− Fy(x0, y0)‖ <
1

4M
(9)
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We are now ready to prove that T is a contractive mapping. For y, z ∈ B(y0, δ),

Tz − Ty = z − y + Fy(x0, y0)−1[F (x, y)− F (x, z)]
= Fy(x0, y0)−1[F (x, y)− F (x, z) + Fy(x0, y0)(z − y)]

We now need to write F (x, y)−F (x, z) in terms of (z−y). In one dimension we could use the Mean
Value Theorem, but in higher dimensions we must substitute an argument using the Fundamental
Theorem of Calculus on the line segment z + t(y − z), 0 ≤ t ≤ 1, joining z and y. Since

d

dt
F (x, z + t(y − z)) = Fy(x, z + t(y − z))(y − z)

we get ∫ 1

0
Fy(x, z + t(y − z))(y − z) dt

= F (x, z + t(y − z))
∣∣∣1
0

= F (x, y)− F (x, z)

Inserting this into the equation above and using the fact that

Fy(x0, y0)(y − z) =
∫ 1

0
Fy(x0, y0)(y − z) dt

we obtain

Tz − Ty = Fy(x0, y0)−1

∫ 1

0
[Fy(x, z + t(y − z))− Fy(x0, y0)](y − z) dt

Therefore, applying Minkowski’s Inequality (Lemma ??) and inequality (??),

|Tz − Ty|

≤ ‖Fy(x0, y0)−1‖ ·
∣∣∣ ∫ 1

0
[Fy(x, z + t(y − z))− Fy(x0, y0)](y − z) dt

∣∣∣
≤ M

∫ 1

0
‖Fy(x, z + t(y − z))− Fy(x0, y0)‖ · |y − z| dt

Now, (x, y), (x, z) ∈ B implies (x, z + t(y − z)) ∈ B, so by the inequality (??),

‖Fy(x, z + t(y − z))− Fy(x0, y0)‖ <
1

4M

Thus,

|Tz − Ty| ≤ M

∫ 1

0

1
4M

|y − z| dt =
1
4
|z − y|

proving that T is contractive on B(y0, δ).

We must still show that T maps some compact neighborhood of y0 into itself. Let V = B(y0, δ/2)
so that V is compact and V ⊂ B(y0, δ). To prove that T : V → V we must show that

|y − y0| ≤ δ/2 ⇒ |Ty − y0| ≤ δ/2
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We first write

Ty − y0 = y + Fy(x0, y0)−1[F (x0, y0)− F (x, y)]− y0

= Fy(x0, y0)−1[F (x0, y0)− F (x, y) + Fy(x0, y0)(y − y0)]
= Fy(x0, y0)−1[L(x, y)− F (x, y)− Fx(x0, y0)(x− x0)]

where L(x, y) is the linear approximation of F (x, y) given above. Then, if x ∈ U = B(x0, ε) and
y ∈ V , we apply inequality (??) to get

|Ty − y0| ≤ ‖Fy(x0, y0)−1‖ · |L(x, y)− F (x, y)− Fx(x0, y0)(x− x0)|
≤ M(|L(x, y)− F (x, y)|+ ‖Fx(x0, y0)‖ · |x− x0|)

< M
( 1

4M
(ε + δ) + Nε

)
=

δ

4
+

(
MN +

1
4

)
ε ≤ δ

4
+

δ

4
=

δ

2

since ε ≤ δ/(4MN + 1).

We have now shown that for any x ∈ U , the mapping T : V → V is contractive. Therefore, by the
Contractive Mapping Principle (Theorem ??), there exists a unique fixed point y(x) ∈ V ,

Ty(x) = y(x)

and this implies that
y(x) = y(x) + Fy(x0, y0)−1[c− F (x, y(x))]

or equivalently
F (x, y(x)) = c

Finally, we prove that y(x) is C1 and derive the formula for dy(x). Since F (x0, y0) = c = F (x, y(x))
we find that

L(x, y(x))− F (x, y(x)) = Fx(x0, y0)(x− x0) + Fy(x0, y0)(y(x)− y0)

Solving for y(x) gives

y(x) = y0 − Fy(x0, y0)−1Fx(x0, y0)(x− x0) (10)
−Fy(x0, y0)−1[L(x, y(x))− F (x, y(x))] (11)

The proof will be complete once we show that the last term (??) is o(|x−x0|) for then, by definition,

dy(x0) = −Fy(x0, y0)−1Fx(x0, y0)

More precisely, we must show that for any λ > 0, there is a neighborhood B(x0, µ) such that

|Fy(x0, y0)−1[L(x, y(x))− F (x, y(x))]| < λ|x− x0|, ∀x ∈ B(x0, µ)

Given λ > 0, choose λ0 > 0 such that

λ0 <
λ

M(1 + MN + λ)
(12)
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Using inequality (??), there is a neighborhood

D = B(x0, µ)×B(y0, ν) ⊂ B

such that
|L(x, y)− F (x, y)| < λ0(|x− x0|+ |y − y0|), ∀ (x, y) ∈ D

By shrinking ε and δ in the first part of the proof, if necessary, we may assume δ/2 < ν so that
x ∈ B(x0, µ) ⇒ y(x) ∈ B(y0, ν). Then, from (??),

|y(x)− y0| ≤ ‖Fy(x0, y0)−1‖ · ‖Fx(x0, y0)‖ · |x− x0|
+ ‖Fy(x0, y0)−1‖ · |L(x, y(x))− F (x, y(x))|

≤ MN |x− x0|+ Mλ0(|x− x0|+ |y(x)− y0|)

Solving for |y(x)− y0| gives the Lipschitz Condition

|y(x)− y0| ≤
M(N + λ0)
1− λ0M

|x− x0|

(Note that, by construction, Mλ0 < 1.) Therefore, ∀x ∈ B(x0, µ),

|Fy(x0, y0)−1[L(x, y(x))− F (x, y(x))]|
≤ ‖Fy(x0, y0)−1‖ · |L(x, y(x))− F (x, y(x))|
< Mλ0(|x− x0|+ |y(x)− y0|)

≤ Mλ0

(
|x− x0|+

M(N + λ0)
1− λ0M

|x− x0|
)

= Mλ0
1 + MN

1−Mλ0
|x− x0|

< λ|x− x0|

since, by (??),

Mλ0
1 + MN

1−Mλ0
< λ ⇐⇒ λ0 <

λ

M(1 + MN + λ)

One last remark we need to make is that the formula for the derivative holds for all x in a neighbor-
hood of x0, not just at the point x0. This follows from the assumption that Fy(x, y) is continuous
in x and y. Since the determinant is also a continuous function of matrix entries, and since
det Fy(x0, y0) 6= 0, we know that there is a neighborhood of (x0, y0) for which det Fy(x, y) 6= 0 (and
hence Fy(x, y) is invertible) in that neighborhood. Therefore, the preceding proof can be done at
any point in this neighborhood.

Examples:

Let us return to some of the examples at the beginning of this section to see how the Implicit
Functions Theorem applies to them.

1) We found the solutions to a certain exact differential equation to be given by the equations

F (x, y) = y + ex cos(y)− x2 = c

8



for various values of c. By the Implicit Function Theorem, such an equation defines y as a function
of x near any point where

Fy(x, y) = 1− ex sin(y) 6= 0

The points in the xy-plane where 1− ex sin(y) = 0 are show below.

For any point not on one of these curves, y is, at least locally, a function of x. The derivative of
this function is given by the Implicit Function Theorem as

y′(x) = −Fy(x, y)−1Fx(x, y) = −ex cos(y)− 2x

1− ex sin(y)

which is essentially the differential equation we started with.

2) We found that we could solve the system of equations

F (x, y) = (x1 − y2
1 + y2

2, x2 − 2y1y2) = (c1, c2)

algebraically for y = (y1, y2) as a function of x = (x1, x2). The Implicit Function Theorem guaran-
tees that y is a C1 function of x near any point for which detFy(x, y) 6= 0. Since

det Fy(x, y) = det
[
−2y1 2y2

−2y2 −2y1

]
= 4(y2

1 + y2
2)

we need only avoid y = (0, 0) and x = (c1, c2). The differential of y is given by the Implicit Function
Theorem as

dy(x) = −Fy(x, y)−1Fx(x, y) = −
[
−2y1 2y2

−2y2 −2y1

]−1 [
1 0
0 1

]
=

1
2(y2

1 + y2
2)

[
yl y2

−y2 y1

]

1.3 Inverse Function Theorem

An immediate consequence of the Implicit Function Theorem is the following.

Theorem 2 (Inverse Function Theorem) Let f : D →n be a C1 function defined on some
neighborhood D ⊂n of y0. If df(y0) is invertible, then there are neighborhoods U of x0 = f(y0) and
V ⊂ D of y0, and a C1 inverse function g : U → V such that

f(g(x)) = x, ∀x ∈ U

and
g(f(y)) = y, ∀ y ∈ V

Moreover, if x = f(y) then
dg(x) = df(y)−1
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Let F (x, y) = f(y) − x. Then Fy(x0, y0) = df(y0) is invertible by assumption, so the Implicit
Function Theorem implies that there are neighborhoods U of x0 and V of y0 and a unique C1

function g : U → V such that F (x, g(x)) = F (x0, y0) = 0, ∀x ∈ U . But this means f(g(x)) = x,
∀x ∈ U . Now restrict f to V and observe that if y ∈ V and f(y) = x ∈ U , then by uniqueness
y = g(x). Therefore, g(U) equals the open set f−1(U) and we may replace the neighborhood V with
g(U), if necessary. Thus, if y ∈ V = g(U), then y = g(x) for some x ∈ U , so g(f(y)) = g(f(g(x))) =
g(x) = y. Finally, the Implicit Function Theorem gives the formula dg(x) = −Fy(x, y)−1Fx(x, y) =
−df(y)−1 · (−I) = df(y)−1.

Example: Consider the function f :3→3 defined by

f(y) = (y1 + y2
2, y2 + y2

1, y3 − y1y2)

The differential of f is

df(y) =

 1 2y2 0
2y1 1 0
−y2 −y1 1


The determinant of this matrix is det df(y) = 1 − 4y1y2. By the Inverse Function Theorem, the
function f has an inverse near any point in 3 not on the sheet 4y1y2 = 1.

1.4 Implicit Description of Surfaces

We are familiar with defining curves and surfaces by equations. For example, the unit circle is
x2 + y2 = 1 and the unit sphere is x2 + y2 + z2 = 1. Systems of equations also produce interesting
geometric objects. For example, the intersection of the unit sphere with the off-center cylinder
(x− 1/2)2 + y2 = 1/4 produces a “figure-eight” curve on the sphere.

This curve is the solution of the system of two equations in three unknowns,

F (x, y, z) = (x2 + y2 + z2, (x− 1/2)2 + y2) = (1, 1/4)

In general, a system of equations, F (x) = c, given by a function F :n→n−m, usually produces an
m-dimensional surface, called a level set of the function F . The Implicit Function Theorem can
be used to describe when such a level set is a smooth m-dimensional surface. One of the simplest
ways to represent a smooth surface S is as the graph of a C1 function f : U →n−m defined on some
subset U ⊂m,

S = {(t, f(t)) ∈m ×n−m | t ∈ U}

As an example, the figure-eight curve C given above can be represented locally as the graph of the
function f : [0, 1] →2

f(x) = (±
√

x− x2,±
√

1− x)

C = {(x, f(x)) | 0 ≤ x ≤ 1}
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Theorem 3 Let F :n→n−m be a C1 function and suppose dF (x) has rank n−m at a point x0 in
the level set

S = {x ∈n | F (x) = c}

Then S can be represented as the graph of a differentiable function in some neighborhood of x0.
More precisely, there is a neighborhood V ⊂n of x0, an open set U ⊂m, and a function f : U →n−m

such that
S ∩ V = {(t, f(t)) | t ∈ U}

Since dF (x0) has rank n −m we can find n −m variables xj such that the columns ∂F/∂xj(x0)
are linearly independent. Call these the s variables and the remaining variables the t variables.
For simplicity, we assume the first m variables x1, . . . , xm are the t variables and we write the level
set as F (t, s) = c. The independence of the columns ∂F/∂sj is equivalent to the matrix Fs being
invertible. Therefore, the Implicit Function Theorem implies there is a C1 function f : U →n−m

such that F (t, f(t)) = c for t ∈ U showing that the level set can be locally represented by the graph
of a differentiable function.

Examples:

1) Consider the figure-eight curve C given above as a level set of F (x, y, z) = (x2 + y2 + z2, (x −
1/2)2 + y2). The differential

dF (x, y, z) =
[

2x 2y 2z
2x− 1 2y 0

]
has rank 2 except on the x-axis (y = z = 0). So, away from the point (1, 0, 0) the curve C can be
locally represented as the graph of a C1 function. The picture shows that C crosses itself at the
point (1, 0, 0) and thus cannot be represented as the graph of a function there.

2) We have seen that the level sets of the function F (x, y, z) = 8(x2 + y2 + z2) − 8(x4 + y4 + z4)
can take on different shapes, some with singular points. By the previous theorem, we can discover
which level surfaces have singularities by finding where the rank of the differential

dF (x, y, z) = (16x− 32x3, 16y − 32y3, 16z − 32z3)

is less than 1. In fact the rank clearly equals 1 unless all components are zero:

x(2x2 − 1) = y(2y2 − 1) = z(2z2 − 1) = 0

Therefore, we can expect singularities in the level sets that contain points all of whose coordinates
are one of the values 0 or ±1/

√
2. The corresponding values of c = F (x, y, z) are easily found. Let

us break them down by type.

Case a) (x, y, z) = 0, c = 0. The origin is an isolated point of the level set F (x, y, z) = 0, since any
nearby point (x, y, z), 0 < |x|, |y|, |z| < 1, satisfies x4 + y4 + z4 < x2 + y2 + z2 and so F (x, y, z) 6= 0.
The other points on this level set form a smooth surface. The origin is thus a singular point of the
level set. The level sets are smooth surfaces for c < 0 and for 0 < c < 2. Although it is not obvious,
the level sets for 0 < c < 2 have two components: an outer surface that looks like a rounded cube,
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and an inner surface that grows out of the origin and looks like a rounded octagon with the corners
pointing towards the faces of the outer rounded cube.

Case b)

(x, y, z) = (
±1√

2
, 0, 0), (0,

±1√
2
, 0), (0, 0,

±1√
2
)

c = 8(
1
2
)− 8(

1
4
) = 2

These 6 points lie on the level set F (x, y, z) = 2. The level set still has an outer surface like a
rounded cube and with “dimples” on the 6 faces corresponding the 6 listed points (see the picture
on p.66). The inner surface is now large enough so that its corners just touch the faces of the
outer surface at the dimples. For 2 < c < 4 the dimples break through the surface, connecting the
previous outer and inner surfaces, and creating a smooth surface with 6 holes.

Case c)

(x, y, z) = (
±1√

2
,
±1√

2
, 0), (

±1√
2
, 0,

±1√
2
), (0,

±1√
2
,
±1√

2
)

c = 8(
1
2

+
1
2
)− 8(

1
4

+
1
4
) = 4

These 12 points lie on the level set F (x, y, z) = 4. The holes have now gotten so big that the the
corners of the rounded cube are at the point of breaking off, thus creating singular points at the
12 edges of the rounded cube corresponding to the 12 listed points (see the picture on p.66). For
4 < c < 6, the level sets break into 8 separate round surfaces that shrink down to points as c
approaches 6.

Case d)

(x, y, z) = (
±1√

2
,
±1√

2
,
±1√

2
)

c = 8(
1
2

+
1
2

+
1
2
)− 8(

1
4

+
1
4

+
1
4
) = 6

These 8 points actually comprise the level set F (x, y) = 6, since 6 is the maximum value of F (x, y, z).
(To see this just observe that 8x2 − 8x4 has global maximum of 2 at x = ±1/

√
2 and F (x, y, z) is

the sum of three such functions). Thus, the level set is not a surface at all, but a set of 8 singular
points. These points are the limit points of the level sets in the previous case. The level sets for
c > 6 are empty.

1.5 Exercises

1. Find the implicit solutions to the differential equation

(y cos(xy)− 1)dx + (x cos(xy) + 1)dy = 0

Determine the points where y can be locally expressed as a C1 function of x and where x can
be locally expressed as a C1 function of y.
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2. Find the points where the function f :2→2

f(x, y) = (sin(x) cosh(y), cos(x) sinh(y))

has a local inverse.

3. Sketch the intersection of the paraboloid z = 4− x2 − y2 and the cylinder y2 + (z − 2)2 = 4.
Determine analytically where the intersection curve can be locally represented as the graph
of a C1 function.
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