
1 The Concept of Measure

The purpose of the Lebesgue integral is to enlarge the class of functions for which
∫ b
a f(x)dx has a

well-defined value. The Riemann integral works well for continuous functions and uniform limits:
if fn ∈ C[a, b] and fn → f uniformly then

∫ b
a fn(x) dx →

∫ b
a f(x) dx. It also works for bounded

functions with a finite number of discontinuities but has problems with functions like Dirichlet’s
function,

f(x) =
{

1 x rational
0 x irrational

Let {r1, r2, . . .} = ∩[a, b] be an enumeration of the rational numbers in [a, b]. Define

fn(x) =
{

1 x = r1, r2, . . . , rn

0 otherwise

Then fn is integrable (
∫ b
a fn(x) dx = 0) and for each x ∈ [a, b], fn(x) → f(x), and but f is not

Riemann-integrable. The Lebesgue integral can handle functions and limits like this.

Lebesgue’s own description of his method was in terms of a parable. A merchant could add up the
day’s receipts by

1. adding them in the order received, say,

5 + 10 + 1 + 1 + 25 + 5 + 10 + 50 + 25 + 10 = 142

or

2. sorting the values first and adding them by type,

2× 1 + 2× 5 + 3× 10 + 2× 25 + 1× 50 = 142

The Riemann integral is like (1); it adds values of f(x) in the order they occur by partitioning the
domain, {x0, x1, . . . , xn}, and calculating the integral through approximations of the form

n∑
j=1

f(xj)(xj − xj−1)

The Lebesgue integral is like (2); it sorts the values of f(x) by partitioning the range, {y0, y1, . . . , yn},
and calculating the integral through approximations of the form

n∑
j=1

yj |Aj |

where
Aj = {x ∈ [a, b] | yj−1 < f(x) ≤ yj}

and |Aj | is the size of Aj . The hard part of the theory is arriving at a precise notion of |Aj |, and
this leads to the concept of Lebesgue measure.
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1.1 Properties of Length

Any method of measuring the size of sets of real numbers should be an extension of the concept of
the length of an interval.

Definition 1 If I = (a, b), [a, b], (a, b], or [a, b), then the length of I is |I| = b− a. If a = −∞ or
b = ∞, then |I| = ∞. If a = b or I = ∅, then |I| = 0.

The following properties of length are easy to verify.

Additivity: If I = I1 ∪ . . . ∪ In (disjoint intervals), then |I| =
∑n

j=1 |Ij |.

Subadditivity: If I ⊂ I1 ∪ . . . ∪ In (not necessarily disjoint intervals), then |I| ≤
∑n

j=1 |Ij |.

It is tempting to extend these properties to arbitrary unions, but this cannot work: If I = [0, 1]
and Ic = [c, c], then

I =
⋃

c∈[0,1]

Ic

but |Ic| = 0 and |I| = 1. Countable unions, on the other hand, are more tractable. In fact, the
following holds.

σ-Additivity: If I =
⋃∞

j=1 Ij (disjoint intervals), then |I| =
∑∞

j=1 |Ij |.

If I is any interval then

|I| = inf
{ ∞∑

j=1

|Ij |
∣∣∣ I ⊂

∞⋃
j=1

Ij (intervals)
}

If I1 = I and Ij = ∅ for j > 1, then I =
⋃∞

j=1 Ij and |I| =
∑∞

j=1 |Ij |, so the infimum is at most |I|.
It remains to show

I ⊂
∞⋃

j=1

Ij ⇒ |I| ≤
∞∑

j=1

|Ij |

If the Ij are not disjoint, we can shrink them to I ′j so they are and still maintain the same union.
For example, if Ij = [a, b], Ik = [c, d] with a < c < b < d, then I ′j = [a, c] and I ′k = [c, d]. Therefore,

I ⊂
∞⋃

j=1

I ′j =
∞⋃

j=1

Ij

and |I ′j | ≤ |Ij |. Now let I ′′j = I ∩ I ′j . Then

I =
∞⋃

j=1

I ′′j ⊂
∞⋃

j=1

Ij
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and |I ′′j | ≤ |I ′j | ≤ |Ij |. By σ-additivity,

|I| =
∞∑

j=1

|I ′′j | ≤
∞∑

j=1

|Ij |

1.2 Measurable Sets

It turns out to be impossible to extend the definition of length |I| from intervals I to arbitrary
subsets A ⊂ and still retain σ-additivity. It is possible to do this, however, for a special, but still
very large, class of sets called Borel sets.

Definition 2 A collection of sets is called a field of sets if it contains the empty set and is closed
under the set operations of union, intersection, and complement.

Thus if A,B are sets in a field , then A ∪B, A ∩B, and Ac = {x ∈ X | x /∈ A} are in . Here X is
some fixed universe that contains all the sets in (and must be in itself).

Example: Let X = [a, b] and let be the collection of finite unions of intervals contained in X. Then
is a field.

Definition 3 A field of sets is a σ-field if countable unions of sets in are again in ,

Aj ∈⇒
∞⋃

j=1

Aj ∈

The previous example is a field but clearly not a σ-field. Given any field , we can construct a σ-field
containing by adding all possible countable unions, their complements, intersections, etc., to . The
process is somewhat technical to carry out and we shall skip the details.

Definition 4 If is a field of sets, then the σ-field generated by , denoted σ, is the intersection of
all σ-fields containing .

It is straightforward to check that σ is indeed a σ-field. It is clearly the smallest σ-field containing .

Definition 5 Let be the field of finite unions of intervals in . Then the sets in σ are called the
Borel sets.

There is no really satisfactory description of the Borel sets, but the class is large enough to include
any set describable in conventional mathematical terms. Our goal is to extend the length function
from intervals to Borel sets while preserving σ-additivity. The extended length function is called
Lebesgue measure.
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1.3 Basic Properties of Measure

We first introduce the general concept of a measure and derive some of its properties.

Definition 6 A measure is a function, µ :→ ∪{∞}, defined on a σ-field of sets , called the
measurable sets, that satisfies

1. Non-negativity: If A is measurable then 0 ≤ µ(A) ≤ ∞, and µ(∅) = 0.

2. σ-Additivity: If Aj is a sequence of disjoint measurable sets, then

µ
( ∞⋃

j=1

Aj

)
=

∞∑
j=1

µ(Aj)

Theorem 1 For any measure µ the following properties hold:

1. Monotonicity: If A and B are measurable sets and A ⊂ B, then µ(A) ≤ µ(B).

2. Continuity from below: If A1 ⊂ A2 ⊂ A3 ⊂ . . . with Aj measurable, then

µ
( ∞⋃

j=1

Aj

)
= lim

j→∞
µ(Aj)

3. Conditional continuity from above: If B1 ⊃ B2 ⊃ B3 ⊃ . . . with Bj measurable and µ(Bj)
finite, then

µ
( ∞⋂

j=1

Bj

)
= lim

j→∞
µ(Bj)

4. σ-Subadditivity: If Aj is a sequence of measurable sets, then

µ
( ∞⋃

j=1

Aj

)
≤

∞∑
j=1

µ(Aj)

1. B \ A is measurable and B = A ∪ (B \ A) is a disjoint union, so by σ-additivity, µ(B) =
µ(A) + µ(B \A). Non-negativity then implies µ(B) ≥ µ(A).

2. The sets Bj = Aj \Aj−1 are measurable and

∞⋃
j=1

Aj = A1 ∪B2 ∪B3 . . .

is a disjoint union, so by σ-additivity,

µ(
( ∞⋃

j=1

Aj

)
= µ(A1) + µ(B2) + µ(B3) + . . .
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Also, for any n,
An = A1 ∪B2 ∪B3 . . . ∪Bn

so
µ(An) = µ(A1) + µ(B2) + µ(B3) + . . . + µ(Bn)

Therefore

µ
( ∞⋃

j=1

Aj

)
= µ(A1) + µ(B2) + µ(B3) + . . .

= lim
n→∞

µ(A1) + µ(B2) + µ(B3) + . . . + µ(Bn)

= lim
n→∞

µ(An)

3. The sets B =
⋂∞

j=1 Bj and Aj = Bj \Bj+1 are measurable and

B1 = B ∪A1 ∪A2 ∪ . . .

is a disjoint union. By σ-additivity,

µ(B1) = µ(B) + µ(A1) + µ(A2) + . . .

Since µ(B) and µ(B1) are finite we may write

µ(B1)− µ(B) = µ(A1) + µ(A2) + . . .

Also, for any n,
B1 = Bn ∪A1 ∪A2 ∪ . . . ∪An−1

so
µ(B1)− µ(Bn) = µ(A1) + µ(A2) + . . . + µ(An)

Therefore,

µ(B1)− µ(B) = µ(A1) + µ(A2) + . . .

= lim
n→∞

µ(A1) + µ(A2) + . . . + µ(An)

= lim
n→∞

µ(B1)− µ(Bn)

= µ(B1)− lim
n→∞

µ(Bn)

from which we conclude that µ(B) = limn→∞ µ(Bn).

4. Define B1 = A1 and for j ≥ 2,

Bj = Aj \ (A1 ∪ . . . ∪Aj−1)

Then the sets Bj are measurable and disjoint, and µ(Bj) ≤ µ(Aj) by monotonicity. Therefore,
since

∞⋃
j=1

Aj =
∞⋃

j=1

Bj

we obtain by σ-additivity

µ
( ∞⋃

j=1

Aj

)
=

∞∑
j=1

µ(Bj) ≤
∞∑

j=1

µ(Aj)
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1.4 A Formula for Lebesgue Measure

Suppose B ⊂
⋃∞

j=1 Ij (intervals). If B is to be measurable with respect to a measure that extends
the length function on intervals, then σ-subadditivity implies |B| ≤

∑∞
j=1 |Ij |. In particular, |B| is

less than or equal to the infimum of all such sums. In Proposition ?? we have seen that the length
of an interval equals this infimum. Lebesgue measure declares |B| to be equal to this infimum for
any Borel set.

Definition 7 The Lebesgue measure of a Borel set B is defined to be

|B| = inf
{ ∞∑

j=1

|Ij |
∣∣∣ B ⊂

∞⋃
j=1

Ij (intervals)
}

Lebesgue measure is clearly non-negative. The proof that it satisfies σ-additivity is rather involved
and we shall be content to simply state this fact without proof.

Theorem 2 Lebesgue measure is a measure on the Borel sets.

The key observation of Lebesgue theory is that using countable covers by intervals gives much more
precise information about the size of sets than using finite covers.

Examples:

1) Let B = [0, 1]∩ be the rational numbers in [0, 1]. Since B = {r1, r2, r3, . . .} is countable, it is a
Borel set. Suppose B is contained in a finite union of intervals, B ⊂ I1 ∪ . . . ∪ In. Because B is
dense in [0, 1], it follows that the union must contain the entire interval, [0, 1] ⊂ I1 ∪ . . .∪ In, so by
subadditivity, 1 ≤ |I1|+ . . . + |In|. Thus, the best estimate of |B| using finite covers by intervals is
|B| ≤ 1.

However, B actually has Lebesgue measure zero and we can show this by estimating |B| using
countable covers by intervals. Given ε > 0, Let Ij = (rj − 2−jε, rj + 2−jε). Then B ⊂

⋃∞
j=1 Ij and

by σ-subadditivity

|B| ≤
∞∑

j=1

|Ij | =
∞∑

j=1

2−j+1ε = 2ε

Since ε is arbitrary, we must have that |B| = 0. A similar argument can be used to prove:

Any countable set of real numbers has Lebesgue measure zero.

2) Let A = [0, 1]\ be the irrational numbers and B = [0, 1]∩ the rational numbers in [0, 1]. Then
[0, 1] = A ∪ B is the disjoint union of two Borel sets, so 1 = |A| + |B|. We know that |B| = 0
by example 1), so |A| = 1. Thus, even though the rational numbers are dense in [0, 1], they are
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negligible in size since they have Lebesgue measure zero. All the “weight” of the interval [0, 1]
is carried by the irrational numbers because they have the same Lebesgue measure as the entire
interval.

3) Any open set of real numbers, A ⊂, is the countable disjoint union of open intervals, A =
⋃∞

j=1 Ij ,
see Theorem ??. Therefore A is a Borel set and |A| =

∑∞
j=1 |Ij |. By taking complements, it follows

that any closed set of real numbers is a Borel set. The definition of Lebesgue measure also implies
that we can “approximate” any Borel set B with an open set in the sense that given any ε > 0,
there is an countable open cover A =

⋃∞
j=1 Ij ⊃ B such that

|A \B| ≤ ε

By making the same argument with the complement, Bc ⊂ A0 =
⋃∞

j=1 Ij , we see that there is also
an approximation of B by a closed set C = Ac

0 ⊂ B,

|B \ C| = |A0 ∩B| = |A0 \Bc| < ε

4) The Cantor Set. Let C0 = [0, 1], and let C1 be the result of removing the segment (1/3, 2/3)
from C0,

C1 = [0, 1/3] ∪ [2/3, 1]

Let C2 be the result of removing the middle thirds of the intervals in C1,

C2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1]

Continuing in this way we obtain a sequence of compact sets Cn such that

• C1 ⊃ C2 ⊃ C3 ⊃ . . .

• Cn is the union of 2n intervals, each of length 1/3n. In particular, |Cn| = 2n/3n.

The intersection of these sets is called the Cantor set,

C =
∞⋂

n=1

Cn

It is clearly non-empty and bounded; it is also closed (by Theorem ??) and therefore compact (by
Theorem ??).

The Cantor set has no point in common with the intervals(3k + 1
3m

,
3k + 2

3m

)
0 ≤ k < 3m−1 − 1

since these are the ones that are deleted. Any (a, b) ⊂ [0, 1] contains such an interval (choose m
such that 1/3m < (b− a)/6), so the Cantor set itself contains no intervals.

The Cantor set can also be described as the set of numbers in [0, 1] that have a representation
in base-3 using only the numbers 0 and 2. An argument similar to the one that shows [0, 1]
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is uncountable can be used to prove the Cantor set is uncountable: If C were countable, then
C = {c1, c2, . . .}. We construct a number x ∈ C that is not on the list as follows. The i-th digit of
x (base 3) is 0 if the i-th digit of ci is 2, and the i-th digit of x is 2 if the i-th digit of ci is 0. The
digits for x involve only 0’s and 2’s, so x ∈ C. Therefore, x = ci for some i. But, for any i, x 6= ci

because their i-th digits are not equal. This contradiction proves that C is uncountable.

Finally we remark that the Cantor set has Lebesgue measure zero. By Theorem ??,

|C| =
∣∣∣ ∞⋂

n=1

Cn

∣∣∣ = lim
n→∞

|Cn| = lim
n→∞

2n

3n
= 0

1.5 Other Examples of Measures

1) Lebesgue Measure on n. Lebesgue measure can be easily extended to n by replacing intervals
with rectangles, R = I1 × · · · × In, where Ij ⊂ is an interval. The measure (volume) of R is

|R| = |I1| · |I2| · · · |In|

If denotes the field of finite unions of rectangles, then the sets in the σ-field generated by are
again called the Borel sets. If B is a Borel set, then the Lebesgue measure of B is

|B| = inf
{ ∞∑

j=1

|Rj |
∣∣∣ B ⊂

∞⋂
j=1

Rj (rectangles)
}

This extended Lebesgue measure satisfies σ-additivity and so is a measure on the Borel sets in n.

2) Counting Measure. For any subset of natural numbers, A ⊂, let µ(A) denote the number of
elements in A (µ(A) = ∞ if A has an infinite number of elements). The measure axioms are trivially
satisfied, so µ is a measure on the subsets of , called the counting measure. We shall see that the
integration theory associated with this measure is the theory of convergent series.

3) Probability Measure. Let X be a finite set {x1, . . . , xn} and let p1, . . . , pn be any non-negative
real numbers or ∞. For any subset A ⊂ X, we define

µ(A) =
∑
xj∈A

pj

The measure axioms are again trivially verified. In fact, it is not hard to show that any measure
on X must have this form. If the values pj also satisfy

µ(X) =
∞∑

j=1

pj = 1

then we can interpret them as probabilities: X is the sample space, pj is the probability that xj

occurs, and µ(A) is the probability of an event A ⊂ X (i.e., that an outcome x is in A). In fact,
any space X that has a measure defined on a σ-field of subsets of X satisfying µ(X) = 1 can be
interpreted as defining probabilities on events (= measurable sets) A ⊂ X.
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1.6 Hausdorff Measure and Dimension

Lebesgue measure on satisfies a scaling property : if a Borel set B is dilated by a factor of t,

tB = {tx | x ∈ B}

then the Lebesgue measure of tB dilates by the same factor,

|tB| = t|B|

If B is a Borel set in n, then the scaling factor is tn,

|tB| = tn|B|

So, for example, if we double the side of a cube, then its volume increases by a factor of 23 = 8.
It is possible to construct measures on and on n that scale by a factor of tα for any α ≥ 0 by
considering sums of the form

∑∞
j=1 |Ij |α where B ⊂

⋃∞
j=1 Ij . For technical reasons, the infimum

of such sums does not lead to a measure directly. The definition must be modified as follows. A
countable collection of intervals {Ij} is called an ε-cover of a set B if B ⊂

⋃
Ij and |Ij | < ε, ∀ j.

Definition 8 For any set B ⊂ define

µα
ε (B) = inf

{ ∞∑
j=1

|Ij |α
∣∣∣ {Ij} is an ε-cover of B

}
The Hausdorff measure of B is defined to be

µα(B) = lim
ε→0

µα
ε (B) = sup

ε>0
µα

ε (B)

As ε decreases, the collection of ε-covers of B is reduced, and hence the infimum, µα
ε (B), increases.

Therefore, the limit of µα
ε (B) always exists (possibly ∞) and equals the supremum of µα

ε (B). The
Hausdorff measure µα is, in fact, a measure on the Borel sets for any α ≥ 0, although we shall omit
the proof. It is easy to see that µ0 is the counting measure and µ1 is the usual Lebesgue measure.
More generally, Hausdorff measure can be extended to n by replacing the intervals Ij with closed
sets Rj and |Ij | with the diameter of Rj ,

d(Rj) = sup{|x− y| | x, y ∈ Rj}

It can be shown that µn is a multiple of Lebesgue measure on the Borel sets in n. In fact, µn(B) =
cn|B|, where cn is the volume of the n-dimensional ball of diameter 1.

The desired scaling property for Hausdorff measure is clear from the definition,

µα(tB) = tαµα(B)

Since we can take the exponent of t as an indication of the dimension of the set, Hausdorff measures
with varying α lead, via the following lemma, to the concept of “fractional dimensions.”

9



µα(B) < ∞⇒ µβ(B) = 0,∀β > α

µα(B) > 0 ⇒ µβ(B) = ∞,∀β < α

Let B ⊂
⋃∞

j=1 Ij with Ij ≤ ε. If β > α, then

∞∑
j=1

|Ij |β =
∞∑

j=1

|Ij |β−α|Ij |α ≤ εβ−α
∞∑

j=1

|Ij |α

On the other hand, if β < α, then similarly

∞∑
j=1

|Ij |β ≥ εβ−α
∞∑

j=1

|Ij |α

Therefore, if β > α,
µβ

ε (B) ≤ εβ−αµα
ε (B) → 0 as ε → 0

so µβ(B) = 0; while if β < α,

µβ
ε (B) ≥ εβ−αµα

ε (B) →∞ as ε → 0

so µβ(B) = ∞.

Definition 9 The Hausdorff dimension of a Borel set B is the unique value α such that µβ(B) =
∞, ∀β < α and µβ(B) = 0, ∀β > α. A Borel set whose Hausdorff dimension is not an integer is
called a fractal.

Note that if we can find a value of α for which 0 < µα(B) < ∞, then the Hausdorff dimension of
B is α.

Example: Let C be the Cantor set (see example 4 on p. 87). We saw that the Lebesgue measure
of C is |C| = 0. However, the Hausdorff measure of C is µα(C) = 1 where

α = log(2)/ log(3) ∼= 0.6308

This implies that Hausdorff dimension of C is α and shows that C is a fractal. To prove µα(C) = 1
we first show that µα(C) ≤ 1. Recall that

C =
∞⋂

n=1

Cn ⊂ Cn =
2n⋃
i=1

Ei
n

for certain disjoint intervals Ei
n with |Ei

n| = 1/3n. Given ε > 0, choose n such that 1/3n < ε. Then

µα
ε (C) ≤

2n∑
i=1

|Ei
n|α =

2n∑
j=1

(
1
3n

)α = 2n(
1
3n

)α = (
2
3α

)n = 1
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since 3α = 2. So µα(C) = limε→0 µα
ε (C) ≤ 1.

It is much harder to prove the reverse inequality, µα(C) ≥ 1. We need the following inequality.

Let F be an interval with |F | = 1/3n and let FL, FR be adjacent intervals on the left and right of
F , respectively, with |FL|, |FR| ≤ 1/3n. Let U = FL ∪ F ∪ FR and let α = log(2)/ log(3). Then

|FL|α + |FR|α ≤ |U |α

Let |FL| = 1/3n−x and |FR| = 1/3n− y for some 0 ≤ x, y ≤ 1/3n. Then |U | = 1/3n−1−x− y and
we must prove that the function

f(x, y) =
( 1

3n−1
− x− y

)α
−

( 1
3n

− x
)α

−
( 1

3n
− y

)α
≥ 0

on the domain 0 ≤ x, y ≤ 1/3n. Note that

f(0, 0) =
( 1

3n−1

)α
− 2

( 1
3n

)α
=

1
2n−1

− 2
1
2n

= 0

since 3α = 2. Also,

fx(x, y) = −α
( 1

3n−1
− x− y

)α−1
+ α

( 1
3n

− x
)α−1

= 0

only for y = 2/3n which lies outside the domain. Since

fx(0, 0) = −α
( 1

3n−1

)α−1
+ α

( 1
3n

)α−1
= α

(3n

2n
− 3n−1

2n−1

)
> 0

it follows that fx(x, y) > 0 on the domain. By symmetry, the same holds for fy(x, y). Therefore,
f(0, 0) = 0 is the minimum of f on the domain and hence f(x, y) ≥ 0 as claimed.

Now suppose C ⊂
⋃∞

j=1 Ij is an ε-cover of C. Since C is compact, ∃N such that C ⊂
⋃N

j=1 Ij .
Each interval Ei

n of Cn is adjacent to exactly one open interval Gi
n of length 1/3n (a middle third

that was removed) and another interval Ei±1
n on the other side of Gi

n such that

Ei
n ∪Gi

n ∪ Ei±1
n = Ek

n−1

for some k. By the lemma, we have for each 1 ≤ j ≤ N ,

|Ei
n ∩ Ij |α + |Ei±1

n ∩ Ij |α ≤ |Ek
n−1 ∩ Ij |α

Repeating this construction recursively with the intervals Ei
m in Cm for 0 ≤ m ≤ n, we find that

2n∑
i=1

|Ei
n ∩ Ij |α ≤

2n−1∑
i=1

|Ei
n−1 ∩ Ij |α ≤ . . . ≤ |E0 ∩ Ij |α = |Ij |α

Now |Ei
n ∩ Ij | 6= 0 only if Ei

n ∩ Ij 6= ∅ and in this case |Ei
n ∩ Ij | = |Ei

n| (i.e., Ei
n ⊂ Ij) with at most

two exceptions—those Ei
n that overlap the endpoints of the interval Ij . Therefore,∑

Ei
n∩Ij 6=∅

|Ei
n|α − 2

3n
≤ |Ij |α
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Since the intervals Ij , 1 ≤ j ≤ N , cover C, together they must intersect all the sets Ei
n. So, adding

the above inequalities for 1 ≤ j ≤ N , gives

2n∑
i=1

|Ei
n|α −

2N

3n
=

N∑
j=1

( ∑
Ei

n∩Ij 6=∅

|Ei
n|α −

2
3n

)
≤

N∑
j=1

|Ij |α

Since
∑2n

i=1 |Ei
n|α = 1 (see above), we find

1− 2N

3n
≤ µα

ε (C) ≤ µα(C)

for all n. Therefore, 1 ≤ µα(C), as claimed.

For sets that are self-symmetric, like the Cantor set, there are often simple heuristic arguments to
determine their dimension using the scaling property. If we scale a set by a factor of t and the
resulting set gives of k copies of the original set, then the scaling property implies tα = k and so its
dimension should be α = log(k)/ log(t). For example, if we multiply the Cantor set by three, we
get two copies of the original Cantor set (one on the interval [0, 1], and the other on the interval
[2, 3]). Therefore, its dimension is α = log(2)/ log(3). This argument is heuristic because we do
not know a priori that there is a way to measure the size of the Cantor set. That is, we need a
function that satisfies the scaling property µ(tC) = tαµ(C) with µ(C) 6= 0 so that we can argue
that µ(3C) = 3αµ(C) = 2µ(C) ⇒ 3α = 2.
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