
1 Lebesgue Integration

1.1 Measurable Functions

Definition 1 Let X be a set with a measure µ defined on a σ-field of subsets . Then (X, , µ) is
called a measure space and the sets in are called measurable sets.

We are primarily interested in the case where X = (or n), is the σ-field of Borel sets, and µ is
Lebesgue measure. Nevertheless, we shall assume throughout this section that (X, , µ) is a general
measure space because the integration theory we want to discuss would not become simpler if we
restricted ourselves to Lebesgue measure on . In fact, the essential features of the theory are easier
to grasp when it is seen that they depend only on the σ-additivity of the measure µ on the σ-field .

Definition 2 A function f : X → is measurable if f−1(B) is measurable for all Borel sets B ⊂.

Remarks:

1) Since intervals generate the Borel sets and f−1 preserves set operations, it is clear that a function
f is measurable if and only if f−1(I) is measurable for any interval I (open or closed). In fact, it
is enough to check that f−1(a,∞) is measurable ∀ a ∈, since

(−∞, a] = \(a,∞)

(−∞, a) =
∞⋂

n=1

(−∞, a + 1/n]

[a,∞) = \(−∞, a)
(a, b) = (−∞, b) ∩ (a,∞)

2) If f is continuous, then for any open interval I, f−1(I) is open and hence measurable. Therefore,
f is measurable.

3) If f : X → D ⊂ is measurable and g : D → is measurable (with respect to Lebesgue measure
on Borel sets), then the composition g ◦ f is again measurable: If B is a Borel set, then g−1(B) is
a Borel set and so (g ◦ f)−1(B) = f−1(g−1(B)) is measurable. It is worth mentioning that there
is a slightly larger σ-field of subsets of , called the Lebesgue sets, that contains the Borel sets and
to which Lebesgue measure can be extended. The Lebesgue sets are taken to be the standard
σ-field of measurable sets on by many mathematicians. However, if we assume that f and g are
measurable with respect to Lebesgue sets, then the composition g ◦ f need not be measurable.

Theorem 1 Let {fn} be a sequence of measurable functions. Then the functions

g(x) = sup{fn(x)}
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h(x) = inf{fn(x)}
j(x) = lim sup{fn(x)}
k(x) = lim inf{fn(x)}

are measurable.

First note that for any a ∈, g(x) > a ⇔ fn(x) > a for some n. Therefore,

g−1(a,∞) =
∞⋃

n=1

f−1
n (a,∞)

The sets f−1
n (a,∞) are measurable by assumption, so g−1(a,∞) is measurable. By Remark 1, g is

measurable. A similar proof shows h is measurable.

By what we have just proved,
gk(x) = sup{fn(x) | n ≥ k}

is measurable and hence

j(x) = lim sup{fn} = lim
k→∞

{gk(x)} = inf{gk(x)}

is measurable. The proof for lim inf is similar.

Corollary 2 (a) If f and g are measurable, then max{f, g} and min{f, g} are measurable. In
particular,

f+ = max{f, 0} and f− = −min{f, 0}

are measurable.

(b) The limit of a convergent sequence of measurable functions is measurable.

Theorem 3 Let f, g : X → be measurable functions and let F :2→ be continuous. Then h(x) =
F (f(x), g(x)) is measurable. In particular, f + g, f − g, fg, and f/g (g 6= 0) are measurable.

For any a ∈, F−1(a,∞) is open, and hence can be written as a countable union of open rectangles,

F−1(a,∞) =
∞⋃

n=1

Rn

where Rn = (an, bn)× (cn, dn). Now,

x ∈ h−1(a,∞) ⇔ (f(x), g(x)) ∈ F−1(a,∞)
⇔ (f(x), g(x)) ∈ Rn for some n

⇔ x ∈ f−1(an, bn) ∩ g−1(cn, dn) for some n
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Therefore,

h−1(a,∞) =
∞⋃

n=1

f−1(an, bn) ∩ g−1(cn, dn)

Since f−1(an, bn) and g−1(cn, dn) are measurable, so is h−1(a,∞), and hence h is measurable.

Summing up, we may say that all ordinary operations of analysis, including limit operations, when
applied to measurable functions, lead to measurable functions.

1.2 Simple Functions

Definition 3 A function s : X → is called simple if the range of s is finite. For any subset E ⊂ X,
the characteristic function of E is defined to be

χE(x) =
{

1 x ∈ E
0 x /∈ E

Suppose the range of a simple function s consists of the distinct numbers c1, . . . , cn. Let Ei =
s−1(ci). Then

s =
n∑

i=1

ciχEi

that is, every simple function is a finite linear combination of characteristic functions. It is clear
that s is measurable if and only if the sets Ei are measurable.

Simple functions are more useful than they appear at first sight.

Theorem 4 (Approximation Theorem) Any function f : X → can be approximated by simple
functions, that is, there is a sequence of simple functions, {sn}, such that sn → f pointwise. If f
is measurable, then the sn may be chosen to be measurable. If f ≥ 0, then the sn may be chosen to
be monotonically increasing. If f is bounded, then the sn converge uniformly to f .

Suppose f ≥ 0. For n ∈ and i = 1, 2, 3, . . . , n2n, define

En
i = f−1[(i− 1)/2n, i/2n)

and En
∞ = f−1[n,∞). Let

sn =
n2n∑
i=1

(i− 1)
2n

χEn
i

+ nχEn
∞

We now show that for any x ∈ X, sn(x) → f(x). Given ε > 0, choose an integer N such that
f(x) < N and 1/2N < ε. For any n ≥ N , there exists a positive integer i ≤ n2n such that
f(x) ∈ [(i− 1)/2n, i/2n). Since sn(x) = (i− 1)/2n, we have

|f(x)− sn(x)| < 1
2n

< ε
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If f is bounded then N can be chosen independent of x and the above inequality holds ∀n ≥ N
and ∀x ∈ X, hence the convergence is uniform.

To see that the sn are monotonically increasing in n, note that[ i− 1
2n

,
i

2n

)
=

[2i− 2
2n+1

,
2i− 1
2n+1

)
∪

[2i− 1
2n+1

,
2i

2n+1

)
Thus,

f(x) ∈
[2i− 2

2n+1
,
2i− 1
2n+1

)
⇒ sn(x) =

i− 1
2n

= sn+1(x)

while
f(x) ∈

[2i− 1
2n+1

,
2i

2n+1

)
⇒ sn(x) =

i− 1
2n

<
2i− 1
2n+1

= sn+1(x)

Similarly,

f(x) ∈ [n,∞) ⇒ sn(x) = n ≤ n2n+1 + k

2n+1
= sn+1(x)

for some 0 ≤ k ≤ 2n+1.

For a general function, write f = f+ − f− and apply the preceding construction to f+ and f−.
Finally, if f is measurable, then the sets En

i are measurable, and hence the simple functions sn are
measurable.

1.3 The Lebesgue Integral

We now define the Lebesgue integral on a measure space (X, , µ). The definition is built up in stages,
similar to the process used for the Riemann integral. First we define the Lebesgue integral of a
measurable simple function. The definition is straightforward and similar to the definition of the
integral of a step function in the Riemann theory. Then, since a non-negative measurable function
f can be approximated by a monotonically increasing sequence of measurable simple functions,
we define the integral of f to be the supremum of the integrals of measurable simple functions
≤ f . Finally, an arbitrary measurable function can be split f = f+ − f− where f+ and f− are
non-negative, and the integral is the corresponding combination of the integrals of f+ and f−.

Definition 4 The Lebesgue integral of a measurable function over a measurable set A is defined
as follows:

1. If s =
∑n

i=1 ciχEi is a simple measurable function then∫
A

s dµ =
n∑

i=1

ciµ(A ∩ Ei)

2. If f is a non-negative measurable function, then∫
A

f dµ = sup
{∫

A
s dµ | 0 ≤ s (simple) ≤ f

}
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3. If f is an arbitrary measurable function, then consider∫
A

f+ dµ,

∫
A

f− dµ

where f+ = max{f, 0} and f− = max{−f, 0} are non-negative measurable functions and
f = f+ − f− (see Corollary ??). If at least one of these integrals is finite, we define∫

A
f dµ =

∫
A

f+ dµ−
∫

A
f− dµ

If both integrals are finite then we say that f is Lebesgue integrable on A with respect to µ
and write f ∈µ (A).

Remarks:

1) It should be noted that an integral may have the value ±∞, but the term integrable is only
applied when the integral is finite.

2) If s is a simple measurable function, then the value of
∫
A s dµ given in 2 and 3 agrees with that

given in 1.

3) If A ⊂ (or n) and µ is Lebesgue measure, it is customary to drop the subscript µ and write (A)
for the Lebesgue measurable functions on A.

Theorem 5 (Basic Properties) In the following statements, functions and sets are assumed to
be measurable.

1. If f is bounded on A and µ(A) < ∞, then f ∈µ (A). In fact, if m ≤ f(x) ≤ M , ∀x ∈ A, then

mµ(A) ≤
∫

A
f dµ ≤ Mµ(A)

2. If f, g ∈µ (A) and f(x) ≤ g(x), ∀x ∈ A, then∫
A

f dµ ≤
∫

A
g dµ

3. If f ∈µ (A) then cf ∈µ (A), ∀ c ∈, and∫
A

cf dµ = c

∫
A

f dµ

4. If µ(A) = 0 and f ∈µ (A), then ∫
A

f dµ = 0
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5. If f is non-negative and B ⊂ A then ∫
B

f dµ ≤
∫

A
f dµ

6. If f ∈µ (A) and B ⊂ A, then f ∈µ (B).

These statements are direct consequences of the definitions and their verification is left as an exercise
for the reader.

1.4 Further Properties of the Lebesgue Integral

Theorem 6 (a) If f is measurable and non-negative then for any countable union of disjoint
measurable sets, A =

⋃∞
n=1 An, ∫

A
f dµ =

∞∑
n=1

∫
An

f dµ

(b) The same conclusion holds for f ∈µ (A).

Statement (b) follows immediately from (a) by writing f = f+ − f− and applying (a) to f+ and
f−.

To prove (a), we first observe that if s is a non-negative simple function,

s =
n∑

i=1

ciχEi

then, by the σ-additivity of µ,∫
A

s dµ =
n∑

i=1

ciµ(Ei ∩A) =
n∑

i=1

∞∑
n=1

ciµ(Ei ∩An) =
∞∑

n=1

∫
An

s dµ

(We can rearrange the series because all terms are ≥ 0; they either sum to ∞ or are absolutely
convergent.) Now suppose s is a simple function such that 0 ≤ s ≤ f . Since

∫
An

s dµ ≤
∫
An

f dµ,∫
A

s dµ =
∞∑

n=1

∫
An

s dµ ≤
∞∑

n=1

∫
An

f dµ

Taking the supremum over all simple functions 0 ≤ s ≤ f we obtain∫
A

f dµ ≤
∞∑

n=1

∫
An

f dµ
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To show the reverse inequality, let ε > 0 and choose a simple function s such that 0 ≤ s ≤ f and
such that ∫

A1

s dµ ≥
∫

A1

f dµ− ε,

∫
A2

s dµ ≥
∫

A2

f dµ− ε

Then ∫
A1∪A2

f dµ ≥
∫

A1∪A2

s dµ =
∫

A1

s dµ +
∫

A2

s dµ ≥
∫

A1

f dµ +
∫

A2

f dµ− 2ε

Since ε is arbitrary, we conclude ∫
A1∪A2

f dµ ≥
∫

A1

f dµ +
∫

A2

f dµ

We can repeat this argument a finite number of times to get∫
A1∪...∪An

f dµ ≥
∫

A1

f dµ + . . . +
∫

An

f dµ

Since A ⊃ A1 ∪ . . . ∪An, we know by Theorem ??(5) that∫
A

f dµ ≥
∫

A1∪...∪An

f dµ

and so ∫
A

f dµ ≥
∫

A1

f dµ + . . . +
∫

An

f dµ

Since this holds for any n, we conclude∫
A

f dµ ≥
∞∑

n=1

∫
An

f dµ

Corollary 7 Let B and C be disjoint measurable sets and let A = B ∪ C. If µ(C) = 0, then for
any measurable function f , ∫

A
f dµ =

∫
B

f dµ

∫
A

f dµ =
∫

B
f dµ +

∫
C

f dµ =
∫

B
f dµ

by Theorem ?? and Theorem ??(4).

This corollary shows that sets of measure zero can be ignored in integration. A common application
is the following. Let f and g be measurable functions defined on a measurable set A, and let

B = {x ∈ A | f(x) = g(x)}, C = A \B

If µ(C) = 0, then ∫
A

f dµ =
∫

B
f dµ =

∫
B

g dµ =
∫

A
g dµ

Thus, functions that differ only on a set of measure zero have the same Lebesgue integral.
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Definition 5 We say that a property P (x) holds almost everywhere if P (x) holds for every x
except for x in a set of measure zero (i.e., P (x) holds for x ∈ A \ Z with µ(Z) = 0).

We can formulate the previous remark as:

Corollary 8 Let f be g are measurable functions on a measurable set A. If f = g almost every-
where on A, then ∫

A
f dµ =

∫
A

g dµ

Example: The Dirichlet function, f = χ[0,1]∩, equals the zero function, g = 0, almost everywhere
on [0, 1], so

∫
[0,1] f dµ =

∫
[0,1] g dµ = 0.

Theorem 9 If f ∈µ (A), then |f | ∈µ (A) and∣∣∣ ∫
A

f dµ
∣∣∣ ≤ ∫

A
|f | dµ

Let

B = {x ∈ A | f(x) ≥ 0}
C = {x ∈ A | f(x) < 0}

so that A = B ∪ C is a disjoint union of measurable sets. By Theorem ??,∫
A
|f | dµ =

∫
B
|f | dµ +

∫
C
|f | dµ =

∫
B

f+ dµ +
∫

C
f− dµ < ∞

which shows that |f | ∈µ (A). Since f ≤ |f | and −f ≤ |f |,∫
A

f dµ ≤
∫

A
|f | dµ, −

∫
A

f dµ ≤
∫

A
|f | dµ

which implies ∣∣∣ ∫
A

f dµ
∣∣∣ ≤ ∫

A
|f | dµ

Theorem 10 Suppose f is measurable and |f | ≤ g for some g ∈µ (A). Then f ∈µ (A).

|f | ≤ g implies 0 ≤ f± ≤ g. Therefore
∫
A f± dµ < ∞ and so f ∈µ (A).

Theorem 11 (Lebesgue’s Monotone Convergence Theorem)
Suppose {fn} is a monotonically increasing sequence of non-negative measurable functions on a
measurable set A,

0 ≤ f1(x) ≤ f2(x) ≤ . . . , ∀x ∈ A
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Then,

lim
n→∞

∫
A

fn dµ =
∫

A
lim

n→∞
fn dµ

Because the sequences fn(x) and
∫
A fn dµ are monotonically increasing, their limits exist in ∪{∞},

f(x) = lim
n→∞

fn(x), I = lim
n→∞

∫
A

fn dµ

Now fn(x) ≤ f(x) on A implies
∫
A fn dµ ≤

∫
A f dµ for each n, and hence the inequality is preserved

in the limit,

I ≤
∫

A
f dµ

We now prove the reverse inequality. Pick c such that 0 < c < 1, and let s be a simple measurable
function such that 0 ≤ s ≤ f . For n ∈ define

An = {x ∈ A | fn(x) ≥ cs(x)}

The assumption f1(x) ≤ f2(x) ≤ . . . implies A1 ⊂ A2 ⊂ . . . Moreover,

A =
∞⋃

n=1

An

The union is obviously contained in A. Conversely, A is contained in the union since for any x ∈ A
there is an n such that fn(x) > cf(x) (fn(x) is monotonically increasing to f(x) and f(x) > cf(x)),
so x ∈ An. Using the fact that A ⊃ An and fn(x) ≥ cs(x) on An we get∫

A
fn dµ ≥

∫
An

fn dµ ≥ c

∫
An

s dµ (1)

Let s =
∑k

i=1 ciχEi be the description of s in terms of characteristic functions. Since

Ei ∩A =
∞⋃

n=1

Ei ∩An

Theorem ?? implies that
µ(Ei ∩A) = lim

n→∞
µ(Ei ∩An)

Therefore, as n →∞,∫
An

s dµ =
∞∑
i=1

ciµ(Ei ∩An) →
∞∑
i=1

ciµ(Ei ∩A) =
∫

A
s dµ

and (??) becomes in the limit as n →∞,

I = lim
n→∞

∫
A

fn dµ ≥ c

∫
A

s dµ

Letting c → 1 we obtain

I ≥
∫

A
s dµ
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Now taking the supremum over all simple functions 0 ≤ s ≤ f gives

I ≥
∫

A
f dµ

Lebesgue’s Monotone Convergence Theorem in conjunction with the Approximation Theorem ?? is
a powerful tool for extending properties of integrals from simple functions to more general functions.
The non-negativity assumption can often be worked around as the proof of the following theorem
demonstrates.

Theorem 12 If f1, f2 ∈µ (A) then f1 + f2 ∈µ (A) and∫
A

f1 + f2 dµ =
∫

A
f1 dµ +

∫
A

f2 dµ

First suppose f1 ≥ 0 and f2 ≥ 0. If these functions are simple, say fk =
∑

ckiχEki
, k = 1, 2, then

f1 + f2 =
n1∑
i=1

c1iχE1i +
n2∑

j=1

c2jχE2j

and by definition ∫
A

f1 + f2 dµ =
n1∑
i=1

c1iµ(A ∩ E1i) +
n2∑

j=1

c2jµ(A ∩ E2j)

=
∫

A
f1 +

∫
A

f2 dµ

If the fk are not simple, then by Theorem ?? there is a sequence of monotonically increasing simple
functions skn → fk, k = 1, 2, with s1n + s2n monotonically increasing to f1 + f2. Lebesgue’s
Monotone Convergence Theorem implies

lim
n→∞

∫
A

s1n + s2n dµ =
∫

A
f1 + f2 dµ

Linearity for simple functions gives

lim
n→∞

∫
A

s1n + s2n dµ = lim
n→∞

∫
A

s1n dµ +
∫

A
s2n dµ

=
∫

A
f1 dµ +

∫
A

f2 dµ

Therefore, ∫
A

f1 + f2 dµ =
∫

A
f1 dµ +

∫
A

f2 dµ

Next suppose f1 ≥ 0 and f2 ≤ 0. Let f = f1 + f2 and define

A+ = {x ∈ A | f(x) ≥ 0}, A− = {x ∈ A | f(x) < 0}
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Then f , f1, and −f2 are non-negative on A+. Applying what we have just proved to f1 = f +(−f2),∫
A+

f1 dµ =
∫

A+

f dµ +
∫

A+

(−f2) dµ =
∫

A+

f dµ−
∫

A+

f2 dµ

or ∫
A+

f dµ =
∫

A+

f1 dµ +
∫

A+

f2 dµ (2)

Similarly, −f , f1 and −f2 are non-negative on A− and (−f2) = (−f) + f1 so∫
A−

(−f2) dµ =
∫

A−
(−f) dµ +

∫
A−

f1 dµ

or ∫
A−

f dµ =
∫

A−
f1 dµ +

∫
A−

f2 dµ (3)

Adding (??) and (??), and using the fact that A+, A− are measurable disjoint sets with A =
A+ ∪A−, we get by Theorem ??,∫

A
f dµ =

∫
A+

f dµ +
∫

A−
f dµ

=
∫

A+

f1 dµ +
∫

A+

f2 dµ +
∫

A−
f1 dµ +

∫
A−

f2 dµ

=
∫

A
f1 dµ +

∫
A

f2 dµ

In the general case, A can be decomposed into four sets Ai on each of which f1 and f2 have a
constant sign. The two cases we have proved so far imply∫

Ai

f1 + f2 dµ =
∫

Ai

f1 dµ +
∫

Ai

f2 dµ (i = 1, 2, 3, 4)

By adding these four equations as before we get the desired formula.

Lebesgue’s Monotone Convergence Theorem can also be applied to integrals of series. The corre-
sponding theorem for Riemann integrals requires much stronger assumptions.

Theorem 13 Suppose fn is a sequence of non-negative measurable functions on a measurable set
A. Then ∫

A

∞∑
n=1

fn dµ =
∞∑

n=1

∫
A

fn dµ

The partial sums, sk =
∑k

n=1 fn, form a monotonically increasing sequence of measurable functions
converging to

∞∑
n=1

fn = lim
k→∞

sk
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By Lebesgue’s Monotone Convergence Theorem and Theorem ??,∫
A

∞∑
n=1

fn dµ =
∫

A
lim

k→∞
sk dµ = lim

k→∞

∫
A

sk dµ

= lim
k→∞

∫
A

k∑
n=1

fn dµ = lim
k→∞

k∑
n=1

∫
A

fn dµ

=
∞∑

n=1

∫
A

fn dµ

[Fatou’s Lemma] Suppose fn is a sequence of non-negative measurable functions on a measurable
set A. Then ∫

A
lim inf fn dµ ≤ lim inf

∫
A

fn dµ

Define
gk(x) = inf{fn(x) | n ≥ k}

Then gk is non-negative, measurable, monotonically increasing to

lim inf fn(x) = lim
k→∞

gk(x)

Moreover, ∫
A

gk dµ ≤
∫

A
fn dµ, ∀n ≥ k

so ∫
A

gk dµ ≤ inf
{∫

A
fn dµ | n ≥ k

}
Therefore, by Lebesgue’s Monotone Convergence Theorem,∫

A
lim inf fn dµ =

∫
A

lim
k→∞

gk dµ = lim
k→∞

∫
A

gk dµ

≤ lim
k→∞

inf
{∫

A
fn dµ | n ≥ k

}
= lim inf

∫
A

fn dµ

It is easy to find examples that show strict inequality may hold in Fatou’s lemma. Let

g(x) =
{

0, 0 ≤ x ≤ 1/2
1, 1/2 < x ≤ 1

and define fn = g(x) if n is odd and fn = g(1− x) if n is even. Then

lim inf fn(x) = 0, ∀x ∈ [0, 1]

but ∫ 1

0
fn(x)dx = 1/2
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Theorem 14 (Lebesgue’s Dominated Convergence Theorem)
Suppose fn is a sequence of measurable functions on a measurable set A that converges pointwise
on A,

f(x) = lim
n→∞

fn(x), quad∀x ∈ A

Assume there is a function g ∈µ (A) such that ∀n,

|fn(x)| ≤ g(x), ∀x ∈ A

Then
lim

n→∞

∫
A

fn dµ =
∫

A
lim

n→∞
fn dµ

We first observe that fn ∈µ (A) and f ∈µ (A) by Theorem ??. Since fn + g ≥ 0, we may apply
Fatou’s Lemma to get ∫

A
(f + g) dµ ≤ lim inf

∫
A
(fn + g) dµ

or ∫
A

f dµ ≤ lim inf
∫

A
fn dµ

Similarly, since g − fn ≥ 0, we get∫
A
(g − f) dµ ≤ lim inf

∫
A
(g − fn) dµ

so
−

∫
A

f dµ ≤ lim inf −
∫

A
fn dµ

which is equivalent to ∫
A

f dµ ≥ lim sup
∫

A
fn dµ

Therefore, ∫
A

f dµ ≤ lim inf
∫

A
fn dµ ≤ lim sup

∫
A

fn dµ ≤
∫

A
f dµ

so the lim sup equals the lim inf, and it follows that the limit exists,∫
A

f dµ = lim
n→∞

∫
A

fn dµ

Corollary 15 If µ(A) < ∞, {fn} is uniformly bounded on A, and f(x) = limn→∞ fn(x), ∀x ∈ A,
then

lim
n→∞

∫
A

fn dµ =
∫

A
f dµ

A converse to Corollary ?? also holds.
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Theorem 16 Let f, g ∈µ (A). Suppose f ≥ g on A and∫
A

f dµ =
∫

A
g dµ

Then f = g almost everywhere on A.

Let
Bn = {x ∈ A | f(x)− g(x) ≥ 1/n}

Then B1 ⊂ B2 ⊂ B3 ⊂ . . . and

B =
∞⋃

n=1

Bn = {x ∈ A | f(x)− g(x) > 0}

By our assumption and linearity (Theorem ??),
∫
A f − g dµ = 0, so

0 =
∫

Bn

f − g dµ ≥ 1
n

µ(Bn)

Hence, µ(Bn) = 0, ∀n. By Theorem ??(2),

µ(B) = lim
n→∞

µ(Bn) = 0

and therefore f = g except on a set B of measure 0.

1.5 Comparison with the Riemann Integral

We now show that the Lebesgue integral gives the same value as the Riemann integral on an
interval. We shall also show that Riemann integrable functions are subject to the rather stringent
condition of being continuous almost everywhere. One of the greatest advantages of the Lebesgue
integral, aside from the fact that it provides a larger class of functions that can be integrated, is
the ease with which limit operations can be handled as demonstrated by the Lebesgue Convergence
Theorems ??, ??. Limits of Riemann integrable functions need not be Riemann integrable; in the
Lebesgue theory this difficulty is almost eliminated since limits of a measurable functions are always
measurable.

Let X = with Lebesgue measure and A = [a, b]. We shall use the familiar notation∫ b

a
f(x) dx

to denote the Riemann integral of f on [a, b] to distinguish it from the Lebesgue integral∫
A

f dµ

14



Theorem 17 a) If f is Riemann integrable on A = [a, b], then f ∈ (A) and∫
A

f dµ =
∫ b

a
f(x) dx

b) Suppose f is bounded on [a, b]. Then f is Riemann integrable on [a, b] if and only if f is
continuous almost everywhere on [a, b].

First recall that a step function g on [a, b] is constant on the subintervals of a partition {x0, x1, . . . , xn}
of [a, b],

g(x) = ci, ∀x ∈ (xi, xi−1)

and therefore can be represented as a simple measurable function,

g =
m∑

i=1

ciχ(xi−1,xi) +
m∑

i=0

g(xi)χ{xi}

(The values of g at the partition points are irrelevant, but we include them here in the second sum
for completeness.) Hence the Riemann integral of g is the same as the Lebesgue integral,∫ b

a
g(x) dx =

m∑
i=1

ci(xi − xi−1)

=
m∑

i=1

ciµ((xi−1, xi)) +
m∑

i=0

g(xi)µ({xi}) =
∫

A
g dµ

If f is Riemann integrable on [a, b], then it is bounded and there are sequences of step functions,
{sn}, {tn}, such that

sn(x) ≤ f(x) ≤ tn(x), ∀x ∈ [a, b]

and

lim
n→∞

∫ b

a
sn(x)dx =

∫ b

a
f(x) dx = lim

n→∞

∫ b

a
tn(x) dx

By replacing sn with max{sn, sn−1} and tn with min{tn, tn−1} for n > 1, we may assume sn is
monotonically increasing and tn is monotonically decreasing. Thus, the limit functions

s(x) = lim
n→∞

sn(x), t(x) = lim
n→∞

tn(x)

exist and are measurable by Theorem ??. By the Lebesgue Dominated Convergence Theorem ??,∫
A

s dµ = lim
n→∞

∫
A

sn dµ = lim
n→∞

∫ b

a
sn(x) dx =

∫ b

a
f(x) dx

and ∫
A

t dµ = lim
n→∞

∫
A

tn dµ = lim
n→∞

∫ b

a
tn(x) dx =

∫ b

a
f(x) dx

In particular, ∫
A

s dµ =
∫ b

a
f(x) dx =

∫
A

t dµ
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Since s ≤ t, we conclude from Theorem ?? that s = t almost everywhere on [a, b]. But s ≤ f ≤ t
on [a, b], so we also obtain

s = f = t almost everywhere on [a, b] (4)

Therefore f is measurable and ∫
A

f dµ =
∫

A
s dµ =

∫ b

a
f(x) dx

Now suppose x is not one of the partition points for any of the step functions tn and sn—the
union of these partition points is countable and hence has measure 0. It is then easy to see that
t(x) = s(x) if and only if f is continuous at x. Therefore, if f is Riemann integrable on [a, b], (??)
shows that f is continuous almost everywhere on [a, b].

Conversely, suppose f is bounded on [a, b] and continuous on [a, b] \ B where µ(B) = 0. For each
n ∈, let

xi = a + i(b− a)/n, 0 ≤ i ≤ n

and define step functions as follows. For x ∈ [xi−1, xi)

sn(x) = inf{f(t) | t ∈ (xi−1, xi)} ≤ f(x)

tn(x) = sup{f(t) | t ∈ (xi−1, xi)} ≥ f(x)

and sn(b) = tn(b) = f(b). These sequences are bounded and monotone so their limit functions,
s(x) = limn→∞ sn(x), t(x) = limn→∞ tn(x), are measurable and

lim
n→∞

∫
A

sn dµ =
∫

A
s dµ

lim
n→∞

∫
A

tn dµ =
∫

A
t dµ

with s(x) ≤ f(x) ≤ t(x), ∀x ∈ [a, b]. Moreover, s = t almost everywhere, since f is continuous on
[a, b] \B and µ(B) = 0. By Corollary ??∫

A
s dµ =

∫
A

t dµ

In particular,

lim
n→∞

∫ b

a
sn(x) dx = lim

n→∞

∫ b

a
tn(x) dx

so that the upper and lower integrals of f agree. Therefore, f is Riemann integrable on [a, b].

Example: Let C be the Cantor set (see p.87) and define f : [0, 1] → [0, 1] by

f(x) = maxC ∩ [0, x]

This function is clearly increasing and bounded, and so must be Riemann integrable. The previous
theorem says that f is then continuous almost everywhere. We can verify this directly by noticing
that f is constant on the gaps between the points of C and has a jump discontinuity at each point
of C. In particular, f is continuous on [0, 1] except on the Cantor set C which has measure 0. Note
that the set of discontinuities in this example is uncountable.
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