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1. Implicit Functions

1.1. Examples of Implicit Functions. A function f : D → Rm is
usually defined by giving some explicit formula to calculate f(x) ∈ Rm

for each x ∈ D ⊂ Rn. Functions can also be defined implicitly by a
system of equations

F (x, y) = c

where F : D1 × D2 → Rm is defined on some domain D1 × D2 ⊂
Rn × Rm. Given x ∈ D1 ⊂ Rn we “solve” the system of equations for
y = y(x) ∈ D2 ⊂ Rm and in this way obtain a function y : D1 → D2. In
this section we shall examine conditions under which such an implicit
function exists and is unique. Let us start by looking at some examples.

1.1.1. Inverse Functions. The inverse of a function f is the function
defined implicitly as the solution of the equation F (x, y) = x−f(y) = 0.
Solving for y gives the inverse function y = f−1(x). We know that we
can only expect a well-defined inverse function to exist on an interval
where f is one-to-one. If f is differentiable, such intervals can be
found by checking where f ′(x) > 0 (or f ′(x) < 0). For example, let
f(x) = x1/x for x ≥ 0 (f(0) = limx→0 x1/x = limx→0 elog(x)/x = 0).
Then f ′(x) = x1/x(1 − log(x))/x2 > 0 for 0 < x < e and f ′(x) < 0
for x > e, so f has an inverse on either of the intervals [0, e] or [e,∞).
Finding a “formula” for the inverse by solving x − y1/y = 0 for y is
difficult, even though we know y = y(x) exists as an abstract function
of x. We could argue that y = xy so substituting this equation into
itself yields y = xxy

. Repeating this indefinitely, we might conclude
that

y = xxx..
.

The difficulty of solving equations explicitly underscores the impor-
tance of having criteria that guarantee the existence and uniqueness of
a solution.
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21.1.2. Solutions to Exact Differential Equations. Recall that an exact
differential equation is one of the form

(1)
dy

dx
= −M(x, y)

N(x, y)

where the functions M and N satisfy

(2)
∂M

∂y
=

∂N

∂x

Equation (1) is often written

(3) M(x, y) dx + N(x, y) dy = 0

To solve the differential equation we find a function F (x, y) such that

(4)
∂F

∂x
= M and

∂F

∂y
= N

The conditions (2) guarantee that such an F exists, at least in some
neighborhood of a given point in the xy-plane. The conditions are
certainly necessary, since if (4) holds then

∂M

∂y
=

∂2F

∂y∂x
=

∂2F

∂x∂y
=

∂N

∂x

Given the function F (x, y), (3) can be written

dF (x, y) =
∂F

∂x
dx +

∂F

∂y
dy = M(x, y) dx + N(x, y) dy = 0

and the solution of the differential equation is therefore the implicit
solution y = y(x) of the equation F (x, y) = c for some constant c.

Let us work out an example. The differential equation

(ex cos(y)− 2x) dx + (1− ex sin(y)) dy = 0

is exact since
∂

∂y
(ex cos(y)− 2x) = −ex sin(y) =

∂

∂x
(1− ex sin(y))

Integrating M(x, y) = ex cos(y) − 2x with respect to x gives the first
information about F (x, y),

F (x, y) = ex cos(y)− x2 + g(y)

where g(y) is an unknown function of y (so ∂g(y)/∂x = 0). To deter-
mine g(y), compute Fy(x, y) and set it equal to N(x, y) = 1−ex sin(y),

Fy(x, y) = −ex sin(y) + g′(y) = 1− ex sin(y)

which implies that g′(y) = 1 and hence g(y) = y. The solution of
the differential equation is therefore the function y = y(x) defined
implicitly by the equation

F (x, y) = ex cos(y)− x2 + y = c



3Below are some graphs of the implicit solutions (determined numeri-
cally) for various values of the constant c.

1.1.3. Equations of Curves and Surfaces. We often describe a curve
in the plane or a surface in space by an equation, F (x, y) = c or
F (x, y, z) = c, respectively. For example, the unit sphere is defined
as the set of points satisfying x2 + y2 + z2 = 1. The sphere is “two-
dimensional” because there are two “degrees of freedom” on the surface
in the sense that any one variables can be thought of as a function of
the other two. For example, z = ±

√
1− x2 − y2. This functional

representation is less elegant than the single equation and it also has
exceptions and cases (we must choose the positive or negative square
root, and the representation does not work well at the points x2 +y2 =
1). It is often difficult if not impossible to solve explicitly for one
variable as a function of the other two in the equation for a general
surface. For example,

F (x, y, z) = 8(x2 + y2 + z2)− 8(x4 + y4 + z4) = c

Here are the surfaces corresponding to c = 2, 3, and 4:

The hand-drawn pictures were done as a homework assignment by a
freshman, Cassidy Curtis, in 1988 at Brown University without the aid
of a computer. For more on this story check out the link “The Best
Homework Ever?” at http://www.math.brown.edu/~banchoff/. It
is difficult to see why c = 2 gives a rounded cube with “dimpled” faces,
c = 3 gives a surface with six “holes” in it, and c = 4 gives a surface
with 12 “singular points.” It would be useful to have some way of
understanding the surface analytically through its equation.

1.1.4. Systems of Equations. Implicit functions can also be vector-
valued and defined by systems of equations. For example, consider
F : R2 × R2 → R2 defined by

F (x, y) = (x1 − y2
1 + y2

2, x2 − 2y1y2), x = (x1, x2), y = (y1, y2)

The system of equations F (x, y) = (c1, c2) is equivalent to

x1 = c1 + y2
1 − y2

2

x2 = c2 + 2y1y2



4We can solve this system algebraically (substitute y2 = (x2− c2)/(2y1)
into the first equation) to realize y as a function of x.

y1 = ±

√√
(x1 − c1)2 + (x2 − c2)2 + (x1 − c1)

2

y2 = ±

√√
(x1 − c1)2 + (x2 − c2)2 − (x1 − c1)

2

The Implicit Function Theorem is a tool for understanding implicitly
defined functions. It provides answers to questions raised by the above
examples such as, When does an inverse function exist? When are the
solutions of an exact differential equation smooth curves? When do
systems of equations define smooth curves and surfaces?

1.2. Implicit Function Theorem. One way to find an approximate
solution to a system of equations F (x, y) = c is to “linearize” the
system. The linear transformation, let’s call it L(x, y) that best ap-
proximates F (x, y) = (F1(x, y), . . . , Fm(x, y)) near (a, b) is

L(x, y) =(
Fi(a, b) +

n∑
j=1

∂Fi

∂xj

(a, b)(xj − aj) +
m∑

j=1

∂Fi

∂yj

(a, b)(yj − bj)
)

1≤i≤m

We can simplify this expression by using matrix operations,

L(x, y) = F (a, b) + Fx(a, b)(x− a) + Fy(a, b)(y − b)

where Fx(a, b) is the rectangular m× n matrix

Fx(a, b) =
[∂Fi

∂xj

(a, b)
]

1≤i≤m
1≤j≤n

and Fy(a, b) is the square m×m matrix

Fy(a, b) =
[∂Fi

∂yj

(a, b)
]

1≤i≤m
1≤j≤m

The linearized system of equations becomes L(x, y) = c or

F (a, b) + Fx(a, b)(x− a) + Fy(a, b)(y − b) = c

If we fix x = a, the corresponding solution for y is

(5) y = b + Fy(a, b)−1(c− F (a, b))

Note that we must assume Fy(a, b) is invertible to solve for y. The
solution to the linearized system suggests a method of obtaining the
general solution using the Contractive Mapping Principle.

Before we proceed we need to have the notion of a norm of a linear
transformation L : Rn → Rm. We may regard L as a rectangular



5n×m matrix and the transformation as given by matrix multiplication,
L · v ∈ Rn for v ∈ Rm. We define

‖L‖ = sup
v 6=0

|L · v|
|v|

= sup
v 6=0

∣∣∣L · v

|v|

∣∣∣ = sup
|u|=1

|L · u|

The supremum is taken over the compact unit sphere, |u| = 1, u ∈ Rn,
so it is a finite number. The norm allows us to estimate

(6) |L · v| ≤ ‖L‖ · |v|, ∀v ∈ Rn

We leave it as an exercise for the reader to verify that ‖L‖ is indeed a
norm on the nm-dimensional vector space of n×m matrices and that
this norm fits between the sup-norm and the usual Euclidean norm,

‖L‖∞ ≤ ‖L‖ ≤ |L|
(The nm entries of a matrix L = [Lij] are the “components” of L as a
vector so that ‖L‖∞ = max |Lij| and |L| = (

∑
L2

ij)
1/2.)

Theorem 1.1 (Implicit Function Theorem). Let F : D1×D2 → Rm be
a C1 function defined on a neighborhood of (x0, y0) ∈ Rn×Rm, and let
c = F (x0, y0). If Fy(x0, y0) is invertible, then there is a neighborhood
U of x0 and a C1 function y(x) : U → D2 such that

F (x, y(x)) = c, ∀x ∈ U

Furthermore, the function y(x) is unique in that there is a neighborhood
V of b such that the only solution of F (x, z) = c for z ∈ V is z = y(x).
Finally, the differential of y(x) is given by implicit differentiation as

dy(x) = −Fy(x, y(x))−1Fx(x, y(x))

Proof. For x ∈ D1 define T : D2 → Rm by

Ty = y + Fy(x0, y0)
−1[c− F (x, y)]

(compare with equation (5)). Although T depends on x, we will not
complicate the notation by indicating this dependence.

The first step is to show that T is a contractive mapping when re-
stricted to a suitable neighborhood of y0. Before we begin we must set
up some notation and a few constants. Let L(x, y) denote the linear
approximation to F (x, y) near (x0, y0),

L(x, y) = F (x0, y0) + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0)

The fact that L(x, y) approximates F (x, y) near (x0, y0) is expressed
formally in a version of Taylor’s Theorem for vector-valued functions
which says that for any λ > 0, there is a neighborhood B0 = B(x0, ε0)×
B(y0, δ0) such that

(7) |L(x, y)− F (x, y)| < λ(|x− x0|+ |y − y0|), ∀ (x, y) ∈ B0



6Similarly, our assumption that F is C1 implies that Fy(x, y) is con-
tinuous in x and y, so for any λ > 0 there is a neighborhood B1 =
B(x0, ε1)×B(y0, δ1) such that

‖Fy(x, y)− Fy(x0, y0)‖ < λ, ∀ (x, y) ∈ B1

Let
M = ‖Fy(x0, y0)

−1‖, N = ‖Fx(x0, y0)‖
and let B0, B1 be the neighborhoods given above when λ = 1/(4M).
Let

δ = min{δ0, δ1}

ε = min
{
ε0, ε1,

δ

4MN + 1

}
and define B = B(x0, ε)×B(y0, δ). Then ∀ (x, y) ∈ B

|L(x, y)− F (x, y)| < 1

4M
(|x− x0|+ |y − y0|) <

1

4M
(ε + δ)(8)

‖Fy(x, y)− Fy(x0, y0)‖ <
1

4M
(9)

We are now ready to prove that T is a contractive mapping. For
y, z ∈ B(y0, δ),

Tz − Ty = z − y + Fy(x0, y0)
−1[F (x, y)− F (x, z)]

= Fy(x0, y0)
−1[F (x, y)− F (x, z) + Fy(x0, y0)(z − y)]

We now need to write F (x, y)−F (x, z) in terms of (z−y). In one dimen-
sion we could use the Mean Value Theorem, but in higher dimensions
we must substitute an argument using the Fundamental Theorem of
Calculus on the line segment z + t(y − z), 0 ≤ t ≤ 1, joining z and y.
Since

d

dt
F (x, z + t(y − z)) = Fy(x, z + t(y − z))(y − z)

we get ∫ 1

0

Fy(x, z + t(y − z))(y − z) dt

= F (x, z + t(y − z))
∣∣∣1
0

= F (x, y)− F (x, z)

Inserting this into the equation above and using the fact that

Fy(x0, y0)(y − z) =

∫ 1

0

Fy(x0, y0)(y − z) dt

we obtain

Tz − Ty = Fy(x0, y0)
−1

∫ 1

0

[Fy(x, z + t(y − z))− Fy(x0, y0)](y − z) dt



7Therefore, applying Minkowski’s Inequality (Lemma ??) and inequal-
ity (6),

|Tz − Ty|

≤ ‖Fy(x0, y0)
−1‖ ·

∣∣∣ ∫ 1

0

[Fy(x, z + t(y − z))− Fy(x0, y0)](y − z) dt
∣∣∣

≤ M

∫ 1

0

‖Fy(x, z + t(y − z))− Fy(x0, y0)‖ · |y − z| dt

Now, (x, y), (x, z) ∈ B implies (x, z + t(y− z)) ∈ B, so by the inequal-
ity (9),

‖Fy(x, z + t(y − z))− Fy(x0, y0)‖ <
1

4M
Thus,

|Tz − Ty| ≤ M

∫ 1

0

1

4M
|y − z| dt =

1

4
|z − y|

proving that T is contractive on B(y0, δ).

We must still show that T maps some compact neighborhood of y0 into
itself. Let V = B(y0, δ/2) so that V is compact and V ⊂ B(y0, δ). To
prove that T : V → V we must show that

|y − y0| ≤ δ/2 ⇒ |Ty − y0| ≤ δ/2

We first write

Ty − y0 = y + Fy(x0, y0)
−1[F (x0, y0)− F (x, y)]− y0

= Fy(x0, y0)
−1[F (x0, y0)− F (x, y) + Fy(x0, y0)(y − y0)]

= Fy(x0, y0)
−1[L(x, y)− F (x, y)− Fx(x0, y0)(x− x0)]

where L(x, y) is the linear approximation of F (x, y) given above. Then,
if x ∈ U = B(x0, ε) and y ∈ V , we apply inequality (8) to get

|Ty − y0| ≤ ‖Fy(x0, y0)
−1‖ · |L(x, y)− F (x, y)− Fx(x0, y0)(x− x0)|

≤ M(|L(x, y)− F (x, y)|+ ‖Fx(x0, y0)‖ · |x− x0|)

< M
( 1

4M

(
ε + δ

)
+ Nε

)
=

δ

4
+

(
MN +

1

4

)
ε ≤ δ

4
+

δ

4
=

δ

2
since ε ≤ δ/(4MN + 1).

We have now shown that for any x ∈ U , the mapping T : V → V is
contractive. Therefore, by the Contractive Mapping Principle (Theo-
rem ??), there exists a unique fixed point y(x) ∈ V ,

Ty(x) = y(x)

and this implies that

y(x) = y(x) + Fy(x0, y0)
−1[c− F (x, y(x))]



8or equivalently
F (x, y(x)) = c

Finally, we prove that y(x) is C1 and derive the formula for dy(x).
Since F (x0, y0) = c = F (x, y(x)) we find that

L(x, y(x))− F (x, y(x)) = Fx(x0, y0)(x− x0) + Fy(x0, y0)(y(x)− y0)

Solving for y(x) gives

y(x) = y0 − Fy(x0, y0)
−1Fx(x0, y0)(x− x0)(10)

−Fy(x0, y0)
−1[L(x, y(x))− F (x, y(x))](11)

The proof will be complete once we show that the last term (11) is
o(|x− x0|) for then, by definition,

dy(x0) = −Fy(x0, y0)
−1Fx(x0, y0)

More precisely, we must show that for any λ > 0, there is a neighbor-
hood B(x0, µ) such that∣∣Fy(x0, y0)

−1[L(x, y(x))− F (x, y(x))]
∣∣ < λ|x− x0|, ∀x ∈ B(x0, µ)

Given λ > 0, choose λ0 > 0 such that

(12) λ0 <
λ

M(1 + MN + λ)

Using inequality (7), there is a neighborhood

D = B(x0, µ)×B(y0, ν) ⊂ B

such that

|L(x, y)− F (x, y)| < λ0(|x− x0|+ |y − y0|), ∀ (x, y) ∈ D

By shrinking ε and δ in the first part of the proof, if necessary, we may
assume δ/2 < ν so that x ∈ B(x0, µ) ⇒ y(x) ∈ B(y0, ν). Then, from
(10),

|y(x)− y0| ≤ ‖Fy(x0, y0)
−1‖ · ‖Fx(x0, y0)‖ · |x− x0|

+ ‖Fy(x0, y0)
−1‖ · |L(x, y(x))− F (x, y(x))|

≤ MN |x− x0|+ Mλ0(|x− x0|+ |y(x)− y0|)
Solving for |y(x)− y0| gives the Lipschitz Condition

|y(x)− y0| ≤
M(N + λ0)

1− λ0M
|x− x0|



9(Note that, by construction, Mλ0 < 1.) Therefore, ∀x ∈ B(x0, µ),∣∣Fy(x0, y0)
−1[L(x, y(x))− F (x, y(x))]

∣∣
≤ ‖Fy(x0, y0)

−1‖ · |L(x, y(x))− F (x, y(x))|
< Mλ0(|x− x0|+ |y(x)− y0|)

≤ Mλ0

(
|x− x0|+

M(N + λ0)

1− λ0M
|x− x0|

)
= Mλ0

1 + MN

1−Mλ0

|x− x0|

< λ|x− x0|
since, by (12),

Mλ0
1 + MN

1−Mλ0

< λ ⇐⇒ λ0 <
λ

M(1 + MN + λ)

One last remark we need to make is that the formula for the derivative
holds for all x in a neighborhood of x0, not just at the point x0. This
follows from the assumption that Fy(x, y) is continuous in x and y.
Since the determinant is also a continuous function of matrix entries,
and since det Fy(x0, y0) 6= 0, we know that there is a neighborhood of
(x0, y0) for which det Fy(x, y) 6= 0 (and hence Fy(x, y) is invertible) in
that neighborhood. Therefore, the preceding proof can be done at any
point in this neighborhood. �

Examples:

Let us return to some of the examples at the beginning of this section
to see how the Implicit Functions Theorem applies to them.

1) We found the solutions to a certain exact differential equation to be
given by the equations

F (x, y) = y + ex cos(y)− x2 = c

for various values of c. By the Implicit Function Theorem, such an
equation defines y as a function of x near any point where

Fy(x, y) = 1− ex sin(y) 6= 0

The points in the xy-plane where 1− ex sin(y) = 0 are show below.

For any point not on one of these curves, y is, at least locally, a function
of x. The derivative of this function is given by the Implicit Function
Theorem as

y′(x) = −Fy(x, y)−1Fx(x, y) = −ex cos(y)− 2x

1− ex sin(y)

which is essentially the differential equation we started with.



102) We found that we could solve the system of equations

F (x, y) = (x1 − y2
1 + y2

2, x2 − 2y1y2) = (c1, c2)

algebraically for y = (y1, y2) as a function of x = (x1, x2). The Implicit
Function Theorem guarantees that y is a C1 function of x near any
point for which det Fy(x, y) 6= 0. Since

det Fy(x, y) = det

[
−2y1 2y2

−2y2 −2y1

]
= 4(y2

1 + y2
2)

we need only avoid y = (0, 0) and x = (c1, c2). The differential of y is
given by the Implicit Function Theorem as

dy(x) = −Fy(x, y)−1Fx(x, y) = −
[
−2y1 2y2

−2y2 −2y1

]−1 [
1 0
0 1

]
=

1

2(y2
1 + y2

2)

[
yl y2

−y2 y1

]

1.3. Inverse Function Theorem. An immediate consequence of the
Implicit Function Theorem is the following.

Theorem 1.2 (Inverse Function Theorem). Let f : D → Rn be a
C1 function defined on some neighborhood D ⊂ Rn of y0. If df(y0) is
invertible, then there are neighborhoods U of x0 = f(y0) and V ⊂ D of
y0, and a C1 inverse function g : U → V such that

f(g(x)) = x, ∀x ∈ U

and
g(f(y)) = y, ∀ y ∈ V

Moreover, if x = f(y) then

dg(x) = df(y)−1

Proof. Let F (x, y) = f(y) − x. Then Fy(x0, y0) = df(y0) is invertible
by assumption, so the Implicit Function Theorem implies that there
are neighborhoods U of x0 and V of y0 and a unique C1 function
g : U → V such that F (x, g(x)) = F (x0, y0) = 0, ∀x ∈ U . But this
means f(g(x)) = x, ∀x ∈ U . Now restrict f to V and observe that
if y ∈ V and f(y) = x ∈ U , then by uniqueness y = g(x). Therefore,
g(U) equals the open set f−1(U) and we may replace the neighborhood
V with g(U), if necessary. Thus, if y ∈ V = g(U), then y = g(x) for
some x ∈ U , so g(f(y)) = g(f(g(x))) = g(x) = y. Finally, the Implicit
Function Theorem gives the formula dg(x) = −Fy(x, y)−1Fx(x, y) =
−df(y)−1 · (−I) = df(y)−1. �

Example: Consider the function f : R3 → R3 defined by

f(y) = (y1 + y2
2, y2 + y2

1, y3 − y1y2)



11The differential of f is

df(y) =

 1 2y2 0
2y1 1 0
−y2 −y1 1


The determinant of this matrix is det df(y) = 1−4y1y2. By the Inverse
Function Theorem, the function f has an inverse near any point in R3

not on the sheet 4y1y2 = 1.

1.4. Implicit Description of Surfaces. We are familiar with defin-
ing curves and surfaces by equations. For example, the unit circle is
x2+y2 = 1 and the unit sphere is x2+y2+z2 = 1. Systems of equations
also produce interesting geometric objects. For example, the intersec-
tion of the unit sphere with the off-center cylinder (x−1/2)2+y2 = 1/4
produces a “figure-eight” curve on the sphere.

This curve is the solution of the system of two equations in three un-
knowns,

F (x, y, z) = (x2 + y2 + z2, (x− 1/2)2 + y2) = (1, 1/4)

In general, a system of equations, F (x) = c, given by a function F :
Rn → Rn−m, usually produces an m-dimensional surface, called a level
set of the function F . The Implicit Function Theorem can be used to
describe when such a level set is a smooth m-dimensional surface. One
of the simplest ways to represent a smooth surface S is as the graph of
a C1 function f : U → Rn−m defined on some subset U ⊂ Rm,

S = {(t, f(t)) ∈ Rm × Rn−m | t ∈ U}
As an example, the figure-eight curve C given above can be represented
locally as the graph of the function f : [0, 1] → R2

f(x) = (±
√

x− x2,±
√

1− x)

C = {(x, f(x)) | 0 ≤ x ≤ 1}

Theorem 1.3. Let F : Rn → Rn−m be a C1 function and suppose
dF (x) has rank n−m at a point x0 in the level set

S = {x ∈ Rn | F (x) = c}
Then S can be represented as the graph of a differentiable function
in some neighborhood of x0. More precisely, there is a neighborhood
V ⊂ Rn of x0, an open set U ⊂ Rm, and a function f : U → Rn−m

such that
S ∩ V = {(t, f(t)) | t ∈ U}



12Proof. Since dF (x0) has rank n−m we can find n−m variables xj such
that the columns ∂F/∂xj(x0) are linearly independent. Call these the s
variables and the remaining variables the t variables. For simplicity, we
assume the first m variables x1, . . . , xm are the t variables and we write
the level set as F (t, s) = c. The independence of the columns ∂F/∂sj

is equivalent to the matrix Fs being invertible. Therefore, the Implicit
Function Theorem implies there is a C1 function f : U → Rn−m such
that F (t, f(t)) = c for t ∈ U showing that the level set can be locally
represented by the graph of a differentiable function. �

Examples:

1) Consider the figure-eight curve C given above as a level set of
F (x, y, z) = (x2 + y2 + z2, (x− 1/2)2 + y2). The differential

dF (x, y, z) =

[
2x 2y 2z

2x− 1 2y 0

]
has rank 2 except on the x-axis (y = z = 0). So, away from the point
(1, 0, 0) the curve C can be locally represented as the graph of a C1

function. The picture shows that C crosses itself at the point (1, 0, 0)
and thus cannot be represented as the graph of a function there.

2) We have seen that the level sets of the function F (x, y, z) = 8(x2 +
y2+z2)−8(x4+y4+z4) can take on different shapes, some with singular
points. By the previous theorem, we can discover which level surfaces
have singularities by finding where the rank of the differential

dF (x, y, z) = (16x− 32x3, 16y − 32y3, 16z − 32z3)

is less than 1. In fact the rank clearly equals 1 unless all components
are zero:

x(2x2 − 1) = y(2y2 − 1) = z(2z2 − 1) = 0

Therefore, we can expect singularities in the level sets that contain
points all of whose coordinates are one of the values 0 or ±1/

√
2. The

corresponding values of c = F (x, y, z) are easily found. Let us break
them down by type.

Case a) (x, y, z) = 0, c = 0. The origin is an isolated point of the level
set F (x, y, z) = 0, since any nearby point (x, y, z), 0 < |x|, |y|, |z| < 1,
satisfies x4 + y4 + z4 < x2 + y2 + z2 and so F (x, y, z) 6= 0. The other
points on this level set form a smooth surface. The origin is thus a
singular point of the level set. The level sets are smooth surfaces for
c < 0 and for 0 < c < 2. Although it is not obvious, the level sets
for 0 < c < 2 have two components: an outer surface that looks like
a rounded cube, and an inner surface that grows out of the origin and
looks like a rounded octagon with the corners pointing towards the
faces of the outer rounded cube.



13Case b)

(x, y, z) =
(±1√

2
, 0, 0

)
,
(
0,
±1√

2
, 0

)
,
(
0, 0,

±1√
2

)
c = 8

(1

2

)
− 8

(1

4

)
= 2

These 6 points lie on the level set F (x, y, z) = 2. The level set still has
an outer surface like a rounded cube and with “dimples” on the 6 faces
corresponding the 6 listed points (see the picture on p.66). The inner
surface is now large enough so that its corners just touch the faces of
the outer surface at the dimples. For 2 < c < 4 the dimples break
through the surface, connecting the previous outer and inner surfaces,
and creating a smooth surface with 6 holes.

Case c)

(x, y, z) =
(±1√

2
,
±1√

2
, 0

)
,
(±1√

2
, 0,

±1√
2

)
,
(
0,
±1√

2
,
±1√

2

)
c = 8

(1

2
+

1

2

)
− 8

(1

4
+

1

4

)
= 4

These 12 points lie on the level set F (x, y, z) = 4. The holes have now
gotten so big that the the corners of the rounded cube are at the point
of breaking off, thus creating singular points at the 12 edges of the
rounded cube corresponding to the 12 listed points (see the picture on
p.66). For 4 < c < 6, the level sets break into 8 separate round surfaces
that shrink down to points as c approaches 6.

Case d)

(x, y, z) =
(±1√

2
,
±1√

2
,
±1√

2

)
c = 8

(1

2
+

1

2
+

1

2

)
− 8

(1

4
+

1

4
+

1

4

)
= 6

These 8 points actually comprise the level set F (x, y) = 6, since 6 is the
maximum value of F (x, y, z). (To see this just observe that 8x2 − 8x4

has global maximum of 2 at x = ±1/
√

2 and F (x, y, z) is the sum of
three such functions). Thus, the level set is not a surface at all, but a
set of 8 singular points. These points are the limit points of the level
sets in the previous case. The level sets for c > 6 are empty.

1.5. Exercises.

(1) Find the implicit solutions to the differential equation

(y cos(xy)− 1)dx + (x cos(xy) + 1)dy = 0

Determine the points where y can be locally expressed as a C1

function of x and where x can be locally expressed as a C1

function of y.



14 (2) Find the points where the function f : R2 → R2

f(x, y) = (sin(x) cosh(y), cos(x) sinh(y))

has a local inverse.
(3) Sketch the intersection of the paraboloid z = 4 − x2 − y2 and

the cylinder y2 + (z − 2)2 = 4. Determine analytically where
the intersection curve can be locally represented as the graph
of a C1 function.


