Name:	Instructor:	Jeffrey	Diller

Math 366: Honors Real Analysis II Spring Semester 2004 Exam 1 Wednesday, March 3

This examination contains 5 problems. Counting the front cover and blank pages, the exam consists of 6 sheets of paper.

Scores

Question	Possible	Actual
1	25	
2	15	
3	30	
4	15	
5	15	
Total	100	

GOOD LUCK

1.	Do each of the following (5 points each).
	(a) State Weierstrass' approximation theorem.
	(b) Define what it means for a function $f:^n \to^m$ to be differentiable at a point $\mathbf{x} \in ^n$.
	(c) Define the <i>norm</i> of a linear transformation $T:^n \to {}^m$.
	(d) State the inverse function theorem
	(d) State the inverse function theorem.

_

(e) State the *chain rule* (this semester's version!).

- 2. Do one of the following two (use the back of the page if necessary, 15 points).
 - (a) Consider $f:^2 \to \text{ given by } f(0,0) = 0 \text{ and }$

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

otherwise. Show that both partial derivatives of f exist at every point in 2 but that f is not continuous at 0.

(b) Consider the vector space $\mathcal{C}([0,1],)$ of continuous functions $f:[0,1]\to \text{with the norm}$

$$f = \int_0^1 |f(x)| \, dx.$$

Show that the function $T: \mathcal{C}([0,1],) \to \text{given by } T(f) = f(1) \text{ is a linear transformation with infinite norm.}$

- **3.** Do two of the following three (15 points each).
 - (a) Compute the norm of the linear transformation $T:^2 \to^2$ given by T(x,y) = (x+2y,y).
 - (b) Consider the system of equations

$$x^{2} + y^{3} + y + 2z = 0$$
$$2x^{5} + 3x + y^{2} - z = 0.$$

Clearly x = 0, y = 0, z = 0 is a solution for the system. Find (in a reasonably systematic way) 'decent' values for x and y that, together with z = .1, approximate another solution to this system. Indicate when you're finished what portion of your computation gives good reason to believe that there actually is a point (x, y, .1) near (0, 0, 0) solving the system.

(c) Consider the set

$$M = \{(x, y, z) \in ^3: x + y + 2yz = 1, zy^3 - 2x = -2\}.$$

At what points might M fail to be a submanifold of ³? **Also**, describe the tangent space to M at the point (1,0,0).

- **4.** Do one of the following two. Feel free to use any results you like from homework, the book, or lecture (15 points).
 - (a) Let $f:^2 \to$ be a differentiable function satisfying $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$ at every point. Show that f(x,y) = f(x+y,0) for all $(x,y) \in ^2$.
 - (b) Suppose that a > 0 is a given real number and that $f: [-a, a] \to$ is a continuous function such that

$$\int_{-a}^{a} f(x)x^{2n} dx = 0$$

for every $n \ge$. Prove that f must be an odd function (i.e. f(-x) = -f(x) for every $x \in$). Hint: use the fact that

$$f(x) = g(x) + h(x)$$

where $g(x) := \frac{f(x) + f(-x)}{2}$ is an even function of x and $h(x) := \frac{f(x) - f(-x)}{2}$ is an odd function of x.

_

5.	Do one of the problems you skipped (your choice, 15 points).