Name: \qquad Instructor: Jeffrey Diller

Math 366: Honors Real Analysis II
Spring Semester 2004
Exam 1
Wednesday, March 3

This examination contains 5 problems. Counting the front cover and blank pages, the exam consists of 6 sheets of paper.

Scores

Question	Possible	Actual
1	25	
2	15	
3	30	
4	15	
5	15	
Total	100	

GOOD LUCK

1. Do each of the following (5 points each).
(a) State Weierstrass' approximation theorem.
(b) Define what it means for a function $f:^{n} \rightarrow^{m}$ to be differentiable at a point $\mathbf{x} \in^{n}$.
(c) Define the norm of a linear transformation $T:^{n} \rightarrow^{m}$.
(d) State the inverse function theorem.
(e) State the chain rule (this semester's version!).
2. Do one of the following two (use the back of the page if necessary, 15 points).
(a) Consider $f:{ }^{2} \rightarrow$ given by $f(0,0)=0$ and

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

otherwise. Show that both partial derivatives of f exist at every point in ${ }^{2}$ but that f is not continuous at 0 .
(b) Consider the vector space $\mathcal{C}([0,1]$,) of continuous functions $f:[0,1] \rightarrow$ with the norm

$$
f=\int_{0}^{1}|f(x)| d x
$$

Show that the function $T: \mathcal{C}([0,1],) \rightarrow$ given by $T(f)=f(1)$ is a linear transformation with infinite norm.
3. Do two of the following three (15 points each).
(a) Compute the norm of the linear transformation $T:^{2} \rightarrow^{2}$ given by $T(x, y)=(x+2 y, y)$.
(b) Consider the system of equations

$$
\begin{aligned}
x^{2}+y^{3}+y+2 z & =0 \\
2 x^{5}+3 x+y^{2}-z & =0
\end{aligned}
$$

Clearly $x=0, y=0, z=0$ is a solution for the system. Find (in a reasonably systematic way) 'decent' values for x and y that, together with $z=.1$, approximate another solution to this system. Indicate when you're finished what portion of your computation gives good reason to believe that there actually is a point $(x, y, .1)$ near ($0,0,0$) solving the system.
(c) Consider the set

$$
M=\left\{(x, y, z) \in^{3}: x+y+2 y z=1, z y^{3}-2 x=-2\right\} .
$$

At what points might M fail to be a submanifold of ${ }^{3}$? Also, describe the tangent space to M at the point $(1,0,0)$.
4. Do one of the following two. Feel free to use any results you like from homework, the book, or lecture (15 points).
(a) Let $f:^{2} \rightarrow$ be a differentiable function satisfying $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}$ at every point. Show that $f(x, y)=$ $f(x+y, 0)$ for all $(x, y) \in^{2}$.
(b) Suppose that $a>0$ is a given real number and that $f:[-a, a] \rightarrow$ is a continuous function such that

$$
\int_{-a}^{a} f(x) x^{2 n} d x=0
$$

for every $n \geq$. Prove that f must be an odd function (i.e. $f(-x)=-f(x)$ for every $x \in$). Hint: use the fact that

$$
f(x)=g(x)+h(x)
$$

where $g(x):=\frac{f(x)+f(-x)}{2}$ is an even function of x and $h(x):=\frac{f(x)-f(-x)}{2}$ is an odd function of x.
5. Do one of the problems you skipped (your choice, 15 points).

