Name: \qquad Instructor: Jeffrey Diller

Math 366: Honors Real Analysis II
 Spring Semester 2004

Final Exam
Wednesday, May 5

This examination contains 5 problems. Counting the front cover and blank pages, the exam consists of 6 sheets of paper.

Scores

Question	Possible	Actual
1	35	
2	40	
3	15	
4	10	
5	10	
6	15	
7	15	
8	10	
Total	140	

GOOD LUCK

1. Do all of the following five (7 points each).
(a) Let $E \subset$ be a set. Define the outer measure of E.
(b) State the dominated convergence theorem.
(c) Define measurable subset of.
(d) Define the linear space $L^{1}\left(\right.$ i.e. $\left.L^{1}()\right)$ together with its norm.
(e) State Fejer's Theorem - define any relevant Fourier series notation.
2. On the next page give examples of four of the following five (10 points each). To define a function, it is enough to draw its graph.
(a) A sequence of continuous functions $f_{n}: \rightarrow$ that

- f_{n} converges pointwise but not uniformly to a continuous function $f: \rightarrow$.
- $\int f=\lim \int f_{n}$.
(b) Same as previous, except that $\int f \neq \lim \int f_{n}$.
(c) A continuous non-negative integrable function $f: \rightarrow$ such that $\lim \sup _{x \rightarrow \infty} f(x)=\infty$.
(d) A sequence of functions $f_{n}: \rightarrow$ such that
- $\lim _{n \rightarrow \infty} f_{n}=0$ in $L^{1} ;$
- $\lim _{n \rightarrow \infty} f_{n}(x)$ does not exist at any point in .

It suffices here to define the first several f_{n} 's - enough to see the pattern.
(e) A sequence of sets $E_{n} \subset$ such that $E_{n+1} \subset E_{n}$ and $m E_{n}=\infty$ for every $n \in$, but $m\left(\bigcap_{n \in} E_{n}\right)=$ 0 .
3. Compute the fourier coefficients of the function $f:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow$ given by $f(x)=|x|$ (15 points).
4. Show that a set $E \subset$ with $m^{*} E=0$ is measureable. (10 points)
5. State and prove Fatou's lemma (10 points).
6. Let $f:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow$ be an L^{2} function. Prove that among all trig polynomials of the form $\sum_{n=-N}^{N} c_{n} e_{n}(x)$, the fourier approximation $S_{N} f$ is the best approximation as measured by the L^{2} metric (15 points).
7. Let $f: \rightarrow$ be a non-negative integrable function and $F: \rightarrow$ be given by

$$
F(x)=\int_{(-\infty, x)} f
$$

Show that F is continuous (15 points).
8. For ten points extra credit, do one of the following two:
(a) Let $f: \rightarrow$ be a 1-periodic, C^{2} function. Show that the fourier approximations $S_{N} f$ converge uniformly to f as $N \rightarrow \infty$. (Hint: what is the relationship between fourier coefficients of f and $f^{\prime \prime}$.)
(b) Let $f_{n}:[0,1] \rightarrow$ be measurable functions converging pointwise to a function $f:[0,1] \rightarrow$. Show that for any $\epsilon>0$, there exists $A \subset[0,1]$ such that $m A>1-\epsilon$ and $f_{n} \rightarrow f$ uniformly on A.

