Name:	Instructor:	Jeffrey	Diller

Math 366: Honors Real Analysis II Spring Semester 2004 Final Exam Wednesday, May 5

This examination contains 5 problems. Counting the front cover and blank pages, the exam consists of 6 sheets of paper.

Scores

Question	Possible	Actual
1	35	
2	40	
3	15	
4	10	
5	10	
6	15	
7	15	
8	10	
Total	140	

GOOD LUCK

1.	Do all of the following five (7 points each).	
	(a) Let $E \subset \text{be a set.}$ Define the <i>outer measure</i> of E .	
	(b) State the dominated convergence theorem.	
	(c) Define measurable subset of.	
	(d) Define the linear space L^1 (i.e. $L^1()$) together with its norm.	

(e) State Fejer's Theorem—define any relevant Fourier series notation.

- 2. On the next page give examples of four of the following five (10 points each). To define a function, it is enough to draw its graph.
 - (a) A sequence of continuous functions $f_n :\to \text{that}$
 - f_n converges pointwise but not uniformly to a continuous function $f:\to$.
 - $\int f = \lim \int f_n$.
 - (b) Same as previous, except that $\int f \neq \lim \int f_n$.
 - (c) A continuous non-negative integrable function $f :\to \text{such that } \limsup_{x\to\infty} f(x) = \infty$.
 - (d) A sequence of functions $f_n :\to \text{such that}$
 - $\lim_{n\to\infty} f_n = 0$ in L^1 ;
 - $\lim_{n\to\infty} f_n(x)$ does not exist at any point in .

It suffices here to define the first several f_n 's—enough to see the pattern.

(e) A sequence of sets $E_n \subset \text{such that } E_{n+1} \subset E_n \text{ and } mE_n = \infty \text{ for every } n \in \text{, but } m(\bigcap_{n \in E_n} E_n) = 0.$

.

3. Compute the fourier coefficients of the function $f: [-\frac{1}{2}, \frac{1}{2}] \to \text{given by } f(x) = |x| \ (15 \text{ points}).$

4. Show that a set $E \subset \text{with } m^*E = 0$ is measureable. (10 points)

5. State and prove Fatou's lemma (10 points).

_

6. Let $f: [-\frac{1}{2}, \frac{1}{2}] \to \text{be an } L^2$ function. Prove that among all trig polynomials of the form $\sum_{n=-N}^{N} c_n e_n(x)$, the fourier approximation $S_N f$ is the best approximation as measured by the L^2 metric (15 points).

7. Let $f : \rightarrow$ be a non-negative integrable function and $F : \rightarrow$ be given by

$$F(x) = \int_{(-\infty, x)} f.$$

Show that F is continuous (15 points).

_

- 8. For ten points extra credit, do one of the following two:
 - (a) Let $f :\to \text{be a 1-periodic}$, C^2 function. Show that the fourier approximations $S_N f$ converge uniformly to f as $N \to \infty$. (Hint: what is the relationship between fourier coefficients of f and f''.)
 - (b) Let $f_n: [0,1] \to$ be measurable functions converging pointwise to a function $f: [0,1] \to$. Show that for any $\epsilon > 0$, there exists $A \subset [0,1]$ such that $mA > 1 - \epsilon$ and $f_n \to f$ uniformly on A.