Math 366, Winter '03

 Homework 4From Rudin. pp 239-241: 15, 19, 21, 23

Profs Personal Problems:

1. Consider the mapping $f: \rightarrow^{2}$ given by

$$
f(x, y, z, w)=\left(x^{2}-y+z, y^{2}-x+w\right) .
$$

Note that $f(1,1,0,0)=(0,0)$.

- Show that the equation(s) $f(x, y, z, w)=(0,0)$ can be solved locally near $(1,1,0,0)$ for x and y in terms of z and w.
- Use linear approximation of f to find a good approximation $\left(x_{1}, y_{1}\right)$ of a point (x, y) such that $f(x, y, .1,-.2)=(0,0)$.
- Use linear approximation of f (about a slightly different point) to further improve your first approximation.

