Math 366, Winter '03 Homework 5

Profs Personal Problems:

- 1. Consider the set $C = \{(x, y, z) \in 3: x^2 y^2 z^2 = 0\}$ At which points does C fail to be an embedded submanifold? What is the dimension and codimension of C? Draw a picture of C.
- **2.** Consider the function $h:\to^2$ given by $h(t)=(t^2,t^3)$ and the set $C=h()\subset^2$.
 - At which points does C fail to be a submanifold of 2 ?
 - Describe the tangent space to C at the point (1, -1).
 - Draw a picture of C.
- **3.** Consider the following set

$$M\{(x, y, z, w) \in {}^{4}: x^{2} - y^{2} - zw = 1, zy + wx = 0\}$$

- At which points does M fail to be an embedded submanifold of 4 .
- What is the dimension and codimension of M?
- Describe (i.e. give a basis for) the tangent space of M at the point (1,1,0,0).
- Draw a picture of M. Full color. Stereo sound.
- 4. (One more time) Consider the function

$$f(x,y) = (x^3 - 2x^2y + y, y^3 - 2x^2).$$

Observe that f(1,1) = (0,-1) and verify that f has a local inverse satisfying $f^{-1}(0,-1) = (1,1)$. Starting with a guess of $(x_0, y_0) = (1,1)$, compute two (increasingly better) approximations of the point $(x,y) = f^{-1}(.1,-.8)$.