Beals page 11, \#1: If $E \subset$ is any set, then

$$
m^{*} E \leq m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)
$$

automatically, regardless of $m^{*} A$. On the other hand, since $m^{*} A=0$,

$$
m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) \leq m^{*} A+m^{*} E=m^{*} E .
$$

Hence $m^{*} E=m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)$ for all $E \subset$. That is, A is measurable.

