Beals, page 22 \#9: No, it's not always true. Consider for example the function $f: \rightarrow$ which is zero everywhere except on intervals of the form $\left[n-1 / n^{2}, n+1 / n^{2}\right], n \in$; and on such an interval the graph of f is the pair of lines joining the points $\left(n-1 / n^{2}, 0\right)$ and $\left(n+1 / n^{2}, 0\right)$ to the point $(n, 1)$. Then f is continuous and $f(n)=1$ for every $n \in$, so $\lim _{x \rightarrow \infty} f(x) \neq 0$ (in fact, the limit doesn't exist). However,

$$
\int f=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

