Beals, page 25, #2:

(a) Note that for n,x > 0, we have
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Therefore, n2x2/e™ < 2 for all n € and all = € [0,1]. In other words, for 2 € [0, 1] we have
In?z?/e"*| < g(x), where g(z) := 2 1p1].

Moreover, lim,, o, n2x?/e™® — 0 for every = € [0, 1] (use L’hépital’s rule, differentiating with
respect to n, for instance). So we can apply the dominated convergence theorem to conclude
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(c) Since log(1+1t) <t fort >0 and e’ is increasing in s, we have
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Hence for all n €,

(1 + z)ne—a:c < e(l—a)a:
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where the right hand side is integrable on [0,00) for a > 1. It follows from this and the
dominated convergence theorem that
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