Beals, page 25, \#2:
(a) Note that for $n, x \geq 0$, we have

$$
e^{n x}=\sum_{j=0}^{\infty} \frac{(n x)^{j}}{j!} \leq \frac{n^{2} x^{2}}{2}
$$

Therefore, $n^{2} x^{2} / e^{n x} \leq 2$ for all $n \in$ and all $x \in[0,1]$. In other words, for $x \in[0,1]$ we have $\left|n^{2} x^{2} / e^{n x}\right| \leq g(x)$, where $g(x):=2 \cdot \mathbf{1}_{[0,1]}$.
Moreover, $\lim _{n \rightarrow \infty} n^{2} x^{2} / e^{n x} \rightarrow 0$ for every $x \in[0,1]$ (use L'hôpital's rule, differentiating with respect to n, for instance). So we can apply the dominated convergence theorem to conclude

$$
\lim _{n \rightarrow \infty} \int \frac{n^{2} x^{2}}{e^{n x}}=\int \lim _{n \rightarrow \infty} \frac{n^{2} x^{2}}{e^{n x}}=\int 0=0 .
$$

(c) Since $\log (1+t) \leq t$ for $t \geq 0$ and e^{s} is increasing in s, we have

$$
\left(1+\frac{x}{n}\right)^{n}=e^{n \log \left(1+\frac{x}{n}\right)} \leq e^{n \cdot(x / n)}=e^{x} .
$$

Hence for all $n \in$,

$$
\left(1+\frac{x}{n}\right)^{n} e^{-\alpha x} \leq e^{(1-\alpha) x},
$$

where the right hand side is integrable on $[0, \infty)$ for $\alpha>1$. It follows from this and the dominated convergence theorem that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{n} e^{-\alpha x}=\int_{0}^{\infty} \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} e^{-\alpha x}=\int_{0}^{\infty} e^{(1-\alpha) x}=\frac{1}{\alpha-1} .
$$

