Beals, page $25 \# 3$: Note that since f is integrable and $F(y)-F(x) \leq \int_{x}^{y}|f|$, there is no loss of generality in what follows if we assume that $f \geq 0$.
(a) Let $\left\{x_{n}\right\} \subset$ be any sequence converging to x. Let I_{n} be the closed interval of points between x_{n} and x. Then

$$
F\left(x_{n}\right)-F(x)=\int_{I_{n}} f=\int \mathbf{1}_{I_{n}} f .
$$

Now the function $g_{n}:=\mathbf{1}_{I_{n}} f$ satisfies $\left|g_{n}\right| \leq g:=|f|$ for all $n \in$. Moreover, $\lim _{n \rightarrow \infty} g_{n}(y)=0$ for all $y \neq x$. Therefore,

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)-F(x)=\lim _{n \rightarrow \infty} \int g_{n}=\int \lim _{n \rightarrow \infty} g_{n}=\int 0=0 .
$$

In other words $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F(x)$, which means that F is continuous at x.
(b) F must be uniformly continuous, too. To see this, note that (since $f \geq 0$) F increases from $\lim _{x \rightarrow-\infty} F(x)=0$ to

$$
M:=\lim _{x \rightarrow \infty} F(x)=\int f<\infty .
$$

So if $\epsilon>0$ is given, then there is some number T such that $M-\epsilon / 2<F(x)<M$ for all $x \geq T$ and similarly $0<F(x)<\epsilon / 2$ for all $x<-T$. In particular, if $x, y>T$ or $x, y<-T$, we have $|F(x)-F(y)|<\epsilon / 2$.
Moreover, F is uniformly continuous on the compact set $[-T, T]$, so there is $\delta>0$ such that $x, y \in[0, T]$ and $|x-y|<\delta$ implies that

$$
|F(x)-F(y)|<\epsilon / 2 .
$$

Now if by chance $|x-y|<\delta$ and, say, $|x|<T$ while $|y|>T$, we have either $-T$ or T between x and y-say, for argument's sake it's T. Then

$$
|F(x)-F(y)| \leq|F(x)-F(T)|+|F(T)-F(y)|<\epsilon / 2+\epsilon / 2=\epsilon
$$

So in all cases, $|x-y|<\delta$ implies that $|F(x)-F(y)|<\epsilon$, and F is uniformly continuous.

