Beals, page 34 \#2: The assertion is false. To see this, consider the function which is zero except on closed intervals $\left[n-1 / 4^{n}, n+1 / 4^{n}\right], n \geq 2$. And to define f on each of these intervals take $f(n)=2^{n}$ and then make f linear on each of the remaining subintervals (i.e. the graph of f on the interval is a triangle of height 2^{n} and width $2 / 4^{n}$). Then on the one hand $\lim _{n \rightarrow \infty} f(n)=\lim 2^{n}=$ ∞, so f is not bounded. But on the other hand,

$$
\int f=\sum_{n=2}^{\infty} \frac{1}{2} \frac{2}{4^{n}} 2^{n}=\sum_{n=2}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}<\infty .
$$

