Beals, page 34 \#3: Let $\epsilon>0$ be given. By Theorem 2 on page 33, there is a continuous, compactly supported function g such that $[1] g-f<\epsilon / 4$. Note that in fact $[1] g_{a}-f_{a}=[1] g-f<\epsilon / 4$ for all $a \in$.

Let $M>0$ be chosen so that $g \equiv 0$ outside $[-M, M]$. Because g has compact support, it is uniformly continuous. So I can choose $\delta>0$ so that $|x-y|<\delta$ implies that $|g(x)-g(y)|<\epsilon / 8 M$. I can, of course, assume that $\delta<M$, too. Therefore, if $|a|<\delta$, it follows that $g_{a} \equiv 0$ outside $[-2 M, 2 M]$ and

$$
\begin{aligned}
{[1] f-f_{a} } & \leq[1] f-g+[1] g-g_{a}+[1] f_{a}-g_{a} \\
& <\frac{\epsilon}{4}+\int_{-2 M}^{2 M}(g(x)-g(x-a))+\frac{\epsilon}{4} \\
& <\frac{\epsilon}{2}+\int_{-2 M}^{2 M} \frac{\epsilon}{8 M}=\epsilon .
\end{aligned}
$$

This proves that $\lim _{a \rightarrow 0}[1] f-f_{a}=0$.

