Rudin, page 165/20:

Let $P(x)=c_{n} x^{n}+\ldots+c_{1} x+c_{0}$ be a polynomial. Then

$$
\int_{0}^{1} f(x) P(x) d x=c_{n} \int_{0}^{1} f(x) x^{n} d x+\ldots c_{1} \int_{0}^{1} f(x) x d x+c_{0} \int_{0}^{1} f(x) x^{0} d x=0
$$

by hypothesis. By Weierstrass' Approximation Theorem, there is a sequence $\left\{P_{n}\right\}$ of polynomials converging uniformly to f on $[0,1]$. Moreover, f is continuous and therefore bounded on $[0,1]$, as is each of the polynomials P_{n}. Therefore (see problem 2 from this section), $f \cdot P_{n}$ converges uniformly to $f \cdot f=f^{2}$ on $[0,1]$. By Theorem 7.16, I conclude that

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) P_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f(x) P_{n}(x) d x=\int_{0}^{1}[f(x)]^{2} d x
$$

Now f^{2} is a non-negative function that vanishes exactly where f does. So if $f(x)>0$ for some $x \in[0,1]$, it follows from continuity of f that for some $\delta>0,|t-x|<\delta$ implies that $f(t)>f(x) / 2$. Therefore,

$$
\int_{0}^{1}[f(x)]^{2} d x \geq \delta[f(x)]^{2} / 4>0 .
$$

This is impossible, so $f \equiv 0$ on $[0,1]$.

