Rudin, page 165/21: The identify function e — e belongs to A, vanishes nowhere and is
injective. Hence A is nowhere vanishing and separates points. Nevertheless, I claim that the
function f(e?) =1/ = e is not in the uniform closure of A.

Note first that
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Now suppose in order to obtain a contradiction that f is in the uniform closure of A. Then for any
€ > 0 we could find an element g € A such that

l9(e”) = f(?)] < e

for every .
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provided we choose ¢ < 1. In particular,
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On the other hand ¢(0) = Zﬁlzg cne™ so
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This contradicts the above and proves that f is not in the uniform closure of A.



