Rudin, page 165/22:

Let $\epsilon>0$ be given. By Exercise 12 from Chapter 6, there is a continuous function $h:[a, b] \rightarrow$ such that $[2] h-f<\sqrt{\epsilon / 4}$. In other words,

$$
\int_{a}^{b}|h(x)-f(x)|^{2} d x<\epsilon / 4
$$

By Weiestrass' Approximation Theorem, there is a polynomial P such that

$$
|P(x)-h(x)|<\sqrt{\frac{\epsilon}{4(b-a)}}
$$

for all $x \in[a, b]$. Thus

$$
\int_{a}^{b}|P(x)-h(x)|^{2} d x<(b-a) \frac{\epsilon}{4(b-a)}=\epsilon / 4 .
$$

Finally,

$$
|P(x)-f(x)|^{2} \leq(|P(x)-h(x)|+|h(x)-f(x)|)^{2} \leq 2\left(|P(x)-h(x)|^{2}+|h(x)-f(x)|^{2}\right),
$$

so

$$
\int_{a}^{b}|P(x)-f(x)|^{2} d x<2(\epsilon / 4+\epsilon / 4)=\epsilon .
$$

If I now choose a sequence $\epsilon_{n}>0$ tending to 0 and let P_{n} be the corresponding polynomials, then it follows that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|P_{n}(x)-f(x)\right|^{2} d x=0
$$

