Rudin, page 165/23:

I proceed by induction to show that for all $n \geq 0$ and $|x|<1$ that

$$
0 \leq P_{n}(x) \leq P_{n+1}(x) \leq|x|
$$

and

$$
|x|-P_{n}(x) \leq|x|\left(1-\frac{|x|}{2}\right)^{n}
$$

For the moment, let me suppose that these inequalities are proven. By finding roots of the derivative, it is easily shown that the function $h:[0,1] \rightarrow$ given by $h(t)=t(1-t / 2)^{n}$ will achieve its maximum at $t=0,1$ or $2 /(n+1)$ (i.e. at endpoints or critical points). We have $h(0)=0, h(1)=1 / 2^{n}$, and $h(2 / n+1)<2 /(n+1)$ (since $h(x)<x$ when $x \in(0,1])$. In any case, $h(t)<2 /(n+1)$ for all t. Thus

$$
\left||x|-P_{n}(x)\right|=|x|-P_{n}(x) \leq h(x)<2 /(n+1)
$$

for all $x \in[-1,1]$, and it follows that P_{n} converges uniformly to $|x|$.
Now I return to the proof of the inequalities asserted earlier. When $n=0$, we have $P_{n}(x)=0$ and $P_{n+1}(x)=x^{2} / 2$, and all the inequalities are easily verified directly. So now I assume that the inequalities have been verified for $n=k$, and I will prove that they hold when $n=k+1$. First of all, we use $0 \leq P_{k}(x) \leq|x|$ to estimate

$$
P_{k+1}(x)=P_{k}(x)+\frac{x^{2}-P_{k}^{2}(x)}{2} \geq P_{k}(x)+\frac{x^{2}-|x|^{2}}{2}=P_{k}(x) .
$$

Secondly,

$$
|x|-P_{k+1}(x)=\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|+P_{k}(x)}{2}\right] \geq\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|+|x|}{2}\right] \geq 0
$$

for $|x| \leq 1$. So $P_{k+1}(x) \leq|x|$. Finally, in the other direction

$$
\begin{aligned}
|x|-P_{k+1}(x) & =\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|+P_{k}(x)}{2}\right] \\
& \leq\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|}{2}\right] \\
& \leq|x|\left(1-\frac{|x|}{2}\right)^{k}\left[1-\frac{|x|}{2}\right] \\
& =|x|\left(1-\frac{|x|}{2}\right)^{k+1}
\end{aligned}
$$

where the second inequality comes from the induction hypothesis. This completes the induction step and the proof.

