
Rudin, page 165/23:

I proceed by induction to show that for all n ≥ 0 and |x| < 1 that

0 ≤ Pn(x) ≤ Pn+1(x) ≤ |x|

and

|x| − Pn(x) ≤ |x|
(

1− |x|
2

)n

.

For the moment, let me suppose that these inequalities are proven. By finding roots of the deriva-
tive, it is easily shown that the function h : [0, 1] → given by h(t) = t(1− t/2)n will achieve its max-
imum at t = 0, 1 or 2/(n + 1) (i.e. at endpoints or critical points). We have h(0) = 0, h(1) = 1/2n,
and h(2/n + 1) < 2/(n + 1) (since h(x) < x when x ∈ (0, 1]). In any case, h(t) < 2/(n + 1) for all
t. Thus

||x| − Pn(x)| = |x| − Pn(x) ≤ h(x) < 2/(n + 1)

for all x ∈ [−1, 1], and it follows that Pn converges uniformly to |x|.

Now I return to the proof of the inequalities asserted earlier. When n = 0, we have Pn(x) = 0
and Pn+1(x) = x2/2, and all the inequalities are easily verified directly. So now I assume that the
inequalities have been verified for n = k, and I will prove that they hold when n = k + 1. First of
all, we use 0 ≤ Pk(x) ≤ |x| to estimate

Pk+1(x) = Pk(x) +
x2 − P 2

k (x)
2

≥ Pk(x) +
x2 − |x|2

2
= Pk(x).

Secondly,

|x| − Pk+1(x) = [|x| − Pk(x)]
[
1− |x|+ Pk(x)

2

]
≥ [|x| − Pk(x)]

[
1− |x|+ |x|

2

]
≥ 0

for |x| ≤ 1. So Pk+1(x) ≤ |x|. Finally, in the other direction

|x| − Pk+1(x) = [|x| − Pk(x)]
[
1− |x|+ Pk(x)

2

]
≤ [|x| − Pk(x)]

[
1− |x|

2

]
≤ |x|

(
1− |x|

2

)k [
1− |x|

2

]
= |x|

(
1− |x|

2

)k+1

,

where the second inequality comes from the induction hypothesis. This completes the induction
step and the proof.
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