Rudin, page 239/14:

a) For $(x, y) \neq(0,0)$, a quick computation shows that

$$
D_{1} f(x, y)=\frac{x^{4}+3 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad D_{2} f(x, y)=\frac{-2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Taking $D_{1}(f(x, y))$, for example, we note that both x^{4} and $x^{2} y^{2}$ are smaller than $|(x, y)|^{4}$. Hence

$$
\left|D_{1} f(x, y)\right| \leq \frac{4|(x, y)|^{2}}{|(x, y)|^{2}}=4
$$

for all $(x, y) \in^{2}-(0,0)$. Likewise,

$$
\left|D_{2} f(x, y)\right| \leq \frac{2|(x, y)|^{4}}{|(x, y)|^{4}}=2
$$

Finally, for $(x, y)=(0,0)$ one computes

$$
D_{1} f(0,0)=\lim _{h \rightarrow 0} \frac{(h-0)}{h}=1
$$

and, in the same fashion, $D_{2} f(0,0)=0$.
b) Let us write $u=(s, t)$. Then

$$
\begin{aligned}
D_{u} f(0,0) & =\lim _{h \rightarrow 0} \frac{f(h u)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3} s^{3} /\left(h^{2} s^{2}+h^{2} t^{2}\right)}{h}=\frac{s^{3}}{s^{2}+t^{2}}=s^{3},
\end{aligned}
$$

since u is a unit vector. This shows that $D_{u} f(0,0)$ exists and, moreover, since $|s| \leq|u| \leq 1$, we have $\left|D_{u} f(0,0)\right| \leq 1$.
d) Were f actually differentiable at $(0,0), D_{u} f$ would be linear in u. But from the formula computed in part b), we see that

$$
D_{(0,1)} f(0,0)+D_{(1,0)} f(0,0)=0+1 \neq \frac{1}{2}=D_{(1,1)} f(0,0) .
$$

