Rudin, page 239/15:

a) We have $\left(x^{4}+y^{2}\right)^{2}-4 x^{4} y^{2}=\left(x^{4}-y^{2}\right)^{2} \geq 0$ for all $(x, y) \in^{2}$.

To see that f is continuous, it's enough to check continuity at $(0,0)$:

$$
\lim _{(x, y) \rightarrow(0,0)} x^{2}+y^{2}-2 x^{2} y-\frac{4 x^{6} y^{2}}{\left(x^{4}+y^{2}\right)^{2}}=0-\lim _{(x, y) \rightarrow(0,0)} x^{2} \frac{4 x^{4} y^{2}}{\left(x^{4}+y^{2}\right)^{2}}=0
$$

since $x^{2} \rightarrow 0$ whereas the magnitude of the other factor is bounded above by 1 . Since $f(0,0)=0$ by definition, this shows that f is continuous at $(0,0)$.
b) A computation shows that

$$
g_{\theta}(t)=t^{2}-2 t^{3}\left(\cos ^{2} \theta \sin \theta\right)-t^{4} h(t)
$$

where

$$
h(t)=\frac{4 \cos ^{6} \theta \sin ^{2} \theta}{\left(t^{2} \cos ^{4} \theta-\sin ^{2} \theta\right)}
$$

is defined and C^{∞} even at $t=0$ (when $\theta \neq 2 n \pi$, we have $\sin \theta \neq 0$ and this is clear; when $\theta=2 n \pi$ the numerator vanishes altogether and $h(t) \equiv 0)$. Thus

$$
\begin{aligned}
g_{\theta}^{\prime}(t) & =2 t-6 t^{2}\left(\cos ^{2} \theta \sin \theta\right)-t^{3}\left(4 h(t)+t h^{\prime}(t)\right) \\
g_{\theta}^{\prime \prime}(t) & =2-12 t\left(\cos ^{2} \theta \sin \theta\right)-t^{2}\left(12 h(t)+8 t h^{\prime}(t)+t^{2} h^{\prime \prime}(t)\right)
\end{aligned}
$$

It follows that $g_{\theta}^{\prime}(0)=0, g_{\theta}^{\prime \prime}(0)=2$. Thus $g_{\theta}(t)$ has a strict local minimum at $t=0$.
However, it doesn't follow that f has a local minimum at $(0,0)$. In fact,

$$
f\left(x, x^{2}\right)=x^{2}+x^{4}-2 x^{4}-\frac{4 x^{10}}{\left(2 x^{4}\right)^{2}}=x^{2}-x^{4}+x^{2}=-x^{4}
$$

so that e.g. $\left\{\left(1 / n, 1 / n^{2}\right)\right\}$ is a sequence of points converging to $(0,0)$ such that $f\left(1 / n, 1 / n^{2}\right)<$ $0=f(0,0)$ for every $n \in$.

