Rudin, page 239/21b: We'll need the derivative:

$$
f^{\prime}(x, y)=\left(6 x^{2}-6 x, 6 y^{2}+6 y\right)=6(x(x-1), y(y+1))
$$

For functions $f:^{2} \rightarrow$, the implicit function theorem allows us to solve $f(x, y)=0$ locally for x in terms of y provided the partial derivative of f with respect to x does not vanish-i.e. provided $x \neq 0,1$. Let us find out where on the zero level set of f this happens:

$$
\begin{aligned}
& 0=f(0, y)=2 y^{3}+3 y^{2} \Rightarrow y=0,-3 / 2 \\
& 0=f(1, y)=-1+2 y^{3}+3 y^{2} \Rightarrow y=-1,1 / 2
\end{aligned}
$$

So by the implicit function theorem, we can solve locally for x in terms of y except near the points $(0,0),(0,-3 / 2),(1,-1),(1,1 / 2)$.

Now if the goal is to solve for y in terms of x, then the implicit function theorem allows us to do so at any point on the zero level set where the partial derivative of f with respect to y vanishes. The problem points occur when $y=0$ or $y=-1$, and $2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}$. More specifically we can solve for y in terms of x except at $(0,3 / 2),(0,0),(1,-1),(-1 / 2,-1)$.

