Rudin, page 239/23: The linear approximation of $f\left(x, y_{1}, y_{2}\right)$ about the point $(0,1,-1)$ is
$L\left(x, y_{1}, y_{2}\right)=f(0,1,-1)+f^{\prime}(0,1,-1)\left(\begin{array}{c}x \\ y_{1}-1 \\ y_{2}+1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ y_{1}-1 \\ y_{2}+1\end{array}\right)=x+y_{2}-1$.
One way to restate the implicit function theorem is to say that you can locally solve $f=0$ for some of the variables in terms of the others if you can do the same for the linear approximation. So that's we do here - we want to solve $f\left(x, y_{1}, y_{2}\right)=0$ for x in terms of y_{1} and y_{2}, so we replace f by L and get

$$
x+y_{2}-1=0 \Rightarrow x=1-y_{2},
$$

where the right side is the linear approximation of the implicit function $x=g\left(y_{1}, y_{2}\right)$. In particular,

$$
\frac{\partial g}{\partial y_{1}}(1,-1)=0, \quad \frac{\partial g}{\partial y_{2}}(1,-1)=-1 .
$$

