Rudin, page 239/7: Let $p = (x_1, \ldots, x_n), q = (y_1, \ldots, y_n) \in E$ be any two points. For $k = 1, \ldots, n$ let $p_k = (x_1, \ldots, x_k, y_{k+1}, \ldots, y_n)$ (in particular $p_n = p$), and set $p_0 := 0$. Then for $1 \leq k \leq n$, the points p_k and p_{k-1} differ only in the *k*th coordinate. Hence, by the one-variable mean value theorem, there exists c_k between x_k and y_k such that

$$|f(p_k) - f(p_{k-1})| = |D_k f(c_k)(x_k - y_k)| \le Cx_k - y_k,$$

where C > 0 is an upper bound for $D_1 f, \ldots D_n f$ on E. Hence

$$|f(p) - f(q)| \le \sum_{k=1}^{n} |f(p_k) - f(p_{k-1})| \le C \sum_{k=1}^{n} |x_k - y_k| \le Cnp - q.$$

The main thing is that the constant Cn has nothing to do with p or q.

Now let $p \in E$ be any point and $\{p_n\} \subset E$ be any sequence convergin to p. Then

$$0 \le \lim_{n \to \infty} f(p_n) - f(p) \le C \lim_{n \to \infty} p_n - p = 0$$

In other words $\lim_{n\to\infty} f(p_n) = f(p)$, which shows that f is continuous at p. Since p was arbitrary, we conclude that f is continuous on E.