Rudin, page 239/9: Fix any point $p \in E$. Let

$$
K=\{x \in E: f(x)=f(p)\} .
$$

I will show that $K=E$, which implies of course that f is constant. Now $p \in K$, so $K \neq \emptyset$. Moreover, f is continuous because it is differentiable, so $K=f^{-1}(f(p))$ is closed (i.e. the inverse image of a closed set by a continuous function is closed). In particular, $E-K$ is open. If I can show that K is also open, then

$$
E=K \cup(K-E)
$$

will express E as a disjoint union of two open sets. But E is connected by hypothesis, so it will follow that $K-E=$ and therefore $E=K$.

So to summarize, it's enough to show that K is open. Let $x \in K$ be any point. Because E itself is open, we can choose $r>0$ such that $N_{x}(r) \subset E$. Let $y \in N_{x}(r)$ be any other point and

$$
h:[0,1] \rightarrow
$$

be given by $h(t)=f(t x+(1-t) y)$. Then $h(1)=f(x)=f(p)$ and $h(0)=f(y)$. Moreover, as the composition of two differentiable functions h itself is differentiable, with

$$
h^{\prime}(t)=D f(t x+(1-t) y) \cdot \frac{d}{d t}(t x+(1-t) y)=\mathbf{0} \cdot(x-y)=0
$$

for all $t \in[0,1]$. It follows (from one variable calculus) that h is constant. In particular $f(y)=$ $h(1)=h(0)=f(p)$. And $y \in N_{r}(x)$ was arbitrary, so we conclude that $N_{r}(x) \subset K$. As x was arbitrary, too, it follows that K is open.

