Rudin, page 239/17:

a) The range is all ${ }^{2}$ except $(0,0)$. Given $(s, t) \in^{2}$, just let $x=\frac{1}{2} \log \left(s^{2}+t^{2}\right)$ and choose y so that $\cos y=e^{-x} s$ and $\sin y=e^{-x} t$. This can be done since $\left.\left(e^{-x} s\right)^{2}+\left(e^{-x} t\right)^{2}\right)=1$.
b) The Jacobian of f is

$$
\operatorname{det}\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)=e^{2 x}\left(\cos ^{2} y+\sin ^{2} y\right)=e^{2 x} \neq 0
$$

for any $(x, y) \in^{2}$. So f is locally invertible by the inverse function theorem. However, f is not globally invertible since it's not injective: $f(x, y+2 n \pi)=f(x, y)$ for every $n \in$.
c)

$$
g(s, t)=\left(\frac{1}{2} \log \left(s^{2}+t^{2}\right), \tan ^{-1}(t / s)\right),
$$

(choosing $\tan ^{-1}$ to have range $(-\pi / 2, \pi / 2)$). Then

$$
g^{\prime}(s, t)=\left(\begin{array}{cc}
\frac{s}{s^{2}+t^{2}} & \frac{t}{s^{2}+t^{2}} \\
\frac{-t}{s^{2}+t^{2}} & \frac{s}{s^{2}+t^{2}}
\end{array}\right) \text {. }
$$

So

$$
g(f(x, y))=\left(\begin{array}{cc}
e^{-x} \cos y & e^{-x} \sin y \\
-e^{-x} \sin y & e^{-x} \cos y
\end{array}\right)=f^{\prime}(x)^{-1} .
$$

d) For given y, the set

$$
\{f(x, y): x \in\}=\left\{e^{x}(\cos y, \sin y): x \in\right\}
$$

consists of all positive multiples of the fixed vector $(\cos y, \sin y)$. That is, the image of a horizontal line is a ray beginning at $(0,0)$ (but not including this point).
For given x, the set

$$
\{f(x, y): y \in\}=\left\{e^{x}(\cos y, \sin y): y \in\right\}
$$

consists of all points at distance e^{x} from $(0,0)$. That is, the image of a vertical line is a circle centered at the origin.

