Homework Set 1: Solutions

1. Find the operator norm of the linear transformations $L::^{2}{ }^{2}$ with matrices

$$
\left(\begin{array}{cc}
4 & 0 \\
0 & -4
\end{array}\right) \text { and }\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

Solution: Let L be the linear transformation corresponding to the first matrix and $\mathbf{v}=(x, y)$ be a vector. Then

$$
L(\mathbf{v})=(4 x,-4 y)=\sqrt{(4 x)^{2}+(-4 y)^{2}}=4 \sqrt{x^{2}+y^{2}}=4 \mathbf{v} .
$$

Hence $L(\mathbf{v}) / \mathbf{v}=4$ regardless of \mathbf{v}. It follows that $L=4$.
Now let L be the linear transformation corresponding to the other matrix. Note that

$$
L(t \mathbf{v}) / t \mathbf{v}=L(\mathbf{v}) / \mathbf{v}
$$

for any $t \in$. Hence

$$
\begin{aligned}
\sup _{\mathbf{v} \in^{2}} L(t \mathbf{v}) / t \mathbf{v} & =\sup \{L(\mathbf{v}) / \mathbf{v}: \mathbf{v}=(x, 1), x \in\} \\
& =\sup _{x \in} \sqrt{\frac{(x+1)^{2}+x^{2}}{x^{2}+1}}
\end{aligned}
$$

(OK, so I'm missing a multiple of the vector (1,0), but you can check that one yourself, and anyhow I actually do take care of it implicitly below when I let $x \rightarrow \pm \infty$.). Call the function inside the square root $f(x)$. Then $\lim _{x \rightarrow \pm \infty} f(x)=2$. Moreover, after differentiating, we see that f has critical points when

$$
x^{2}-x=0 \Rightarrow x=1,0
$$

Since $f(1)=5 / 2$ and $f(0)=1$, we conclude that $L=\sqrt{5 / 2}$.
2. Let V be a vector space over the field (or). A norm on V is a function $\cdot: V \rightarrow$ such that for all $\lambda \in$ and $\mathbf{v}, \mathbf{w} \in V$,

- $\mathbf{v} \geq 0$ with equality if and only if $\mathbf{v}=0$.
- $\lambda \mathbf{v}=|\lambda| \mathbf{v}$
- $\mathbf{v}+\mathbf{w} \leq \mathbf{v}+\mathbf{w}$.

Given a norm • on V, show that

$$
d(\mathbf{v}, \mathbf{w})=\mathbf{v}-\mathbf{w}
$$

defines a metric on V. A set U is said to be open with respect to \cdot if it is open with respect to the associated metric d.

Solution: We first check that d is a metric. Clearly $d(\mathbf{v}, \mathbf{w})=\mathbf{v}-\mathbf{w} \geq 0$, and

$$
\mathbf{v}-\mathbf{w}=0 \Leftrightarrow \mathbf{v}-\mathbf{w}=0 \Leftrightarrow \mathbf{v}=\mathbf{w} .
$$

Symmetry of d follows from $\mathbf{v}-\mathbf{w}=|-1| \mathbf{w}-\mathbf{v}$. Finally,

$$
d(\mathbf{v}, \mathbf{w})=\mathbf{v}-\mathbf{w}=(\mathbf{v}-\mathbf{u})-(\mathbf{w}-\mathbf{u}) \leq \mathbf{v}-\mathbf{u}+\mathbf{w}-\mathbf{u}=d(\mathbf{v}, \mathbf{u})+d(\mathbf{u}, \mathbf{w})
$$

so the triangle inequality holds. Thus d is a metric.
3. Different norms • and \cdot on the same vector space are called comparable if there are constants $C_{1}, C_{2}>0$ such that

$$
C_{1} \mathbf{v} \leq \mathbf{v}^{\prime} \leq C_{2} \mathbf{v}
$$

for all $\mathbf{v} \in V$.
Supposing that $\cdot .^{\prime}$ are comparable, show that a set $U \subset V$ is open with respect to \cdot if and only if it is open with respect to ${ }^{\prime}$. Does the same conclusion hold if you replace 'open' with 'closed'? 'compact'? 'connected'? Explain.

Solution: Let $U \subset V$ be open with respect to and $\mathbf{v} \in U$. Then there exists $r>0$ such that $N_{r}(\mathbf{v})=\{\mathbf{w} \in V: \mathbf{w}-\mathbf{v}<r\} \subset U$. But since

$$
\mathbf{w}-\mathbf{v}^{\prime} \leq r / C_{2} \Rightarrow \mathbf{w}-\mathbf{v} \leq r,
$$

we have $N_{r / C_{2}}^{\prime}(\mathbf{v}) \subset N_{r}(\mathbf{v}) \subset U$ (where the prime denotes 'neighborhood with respect to ${ }^{\prime}$ '. That is, any $\mathbf{v} \in U$ admits a ${ }^{\prime}$ neighborhood also contained in U, so U is open with respect to ${ }^{\prime}$.

The same argument shows that if U is open with respect to ${ }^{\prime}$, then U is also open with respect to \cdot

The conclusion also works for closed sets, compact sets, and connected sets, because all of these can be characterized in terms of open sets (e.g. a set is closed iff it's the complement of an open set, etc, etc.)
4. Let $n, m \in^{+}$be given and $V=L\left({ }^{n},^{m}\right)$ be the vector space of linear transformations from ${ }^{n}$ to ${ }^{m}$. Let $T=\left(a_{i j}\right) \in V$ be an arbitrary element. Show that the following norms on V are all comparable to the operator norm on V.

- $[\infty] T=\max _{i, j}\left|a_{i j}\right|$
- [1] $T=\sum_{i, j}\left|a_{i j}\right|$
- $[2] T=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}$

In fact, it can be shown that pretty much any two norms on a finite dimensional vector space are comparable (Prove this and you take care of all the above items at once. And I'll give you five extra credit points).

Solution: Let $a=\max \left|a_{i j}\right|$. Then

$$
a=\sqrt{a^{2}} \leq \sqrt{\sum_{i, j} a_{i j}^{2}} \leq \sqrt{\left(\sum_{i, j}\left|a_{i j}\right|\right)^{2}}=\sum_{i, j}\left|a_{i j}\right| \leq n m a
$$

where $n m$ is just the number of entries in T. Since all these inequalities hold regardless of T, this shows that $[\infty] \cdot$. [2]. and [1]. are all comparable. To finish the proof it's enough to show that • is comparable to any one of these - say [∞].

If $\mathbf{v}=\mathbf{e}_{j}$ is one of the usual basis vectors, then

$$
T(\mathbf{v})=\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)=\sqrt{\sum_{i} a_{i j}^{2}} \leq \sqrt{\sum_{i} a^{2}}=\sqrt{m} a
$$

and if $\mathbf{v}=v_{1} \mathbf{e}_{1}+\ldots v_{n} \mathbf{e}_{n}$ is an arbitrary unit vector, then

$$
T(\mathbf{v})=\sum_{j} v_{j} T\left(\mathbf{e}_{j}\right) \leq \sum_{j}\left|v_{j}\right| T\left(\mathbf{e}_{j}\right) \leq n \cdot \sqrt{m} a
$$

because $\left|v_{j}\right| \leq 1$ for all j. Hence

$$
T(\mathbf{v})=\sup _{\mathbf{v}=1} T(\mathbf{v}) \leq n \sqrt{m}[\infty] T
$$

By the way,
Theorem. Any two norms on a finite dimensional real (or complex) vector space V are comparable.

Proof. Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be a basis for V and $[\infty]$. be the norm on V given by

$$
[\infty] \mathbf{v}=\max _{1 \leq j \leq n}\left|c_{j}\right|
$$

where the numbers c_{j} come from writing $\mathbf{v}=c_{1} \mathbf{e}_{1} \ldots c_{n} \mathbf{e}_{n}$ as a linear combination of basis vectors. It is enough to show that any other norm • on V is comparable to $[\infty]$. Now on the one hand, we have

$$
\mathbf{v} \leq\left|c_{1}\right| \mathbf{e}_{1}+\cdots+\mathbf{e}_{n} \leq n\left(\max \mathbf{e}_{j}\right)[\infty] \mathbf{v}
$$

which gives comparability in one direction.
To get comparability in the other direction, I suppose for the sake of obtaining a contradiction that for any $C>0$ there exists $\mathbf{v} \in V$ such that $[\infty] \mathbf{v}>C \mathbf{v}$. Then in particular, by choosing a sequence of C 's tending to ∞, we can find a sequence of vectors $\left\{\mathbf{v}_{j}\right\} \subset V$ such that $[\infty] \mathbf{v}_{j}=1$ whereas $\lim _{j \rightarrow \infty} \mathbf{v}_{j}=0$.

Given this, I claim that after passing to a subsequence, we can further assume that $\left\{\mathbf{v}_{j}\right\}$ converges to some vector $\mathbf{v} \in V$. And I never claim anything that I can't prove. Never. If we write

$$
\mathbf{v}_{j}=c_{1 j} \mathbf{e}_{1}+\ldots c_{n j} \mathbf{e}_{n}
$$

then the 'coordinate vectors' $\left(c_{1 j}, \ldots, c_{n j}\right) \in^{n}$ all lie in the compact (because closed and bounded) set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in^{n}: \max \left|x_{k}\right|=1\right\}$, so after passing to a subsequence, we can assume that $c_{1 j} \rightarrow c_{1}$, $\ldots c_{n j} \rightarrow c_{n}$ where max $\left|c_{k}\right|=1$. But, from the definition of $[\infty]$., this is the same as saying that

$$
\lim _{n \rightarrow \infty}[\infty] \mathbf{v}_{j}-\mathbf{v}=0
$$

where $\mathbf{v}=c_{1} \mathbf{e}_{1}+\cdots+c_{n} \mathbf{e}_{n}$. So the claim is true.
We get our contradiction as follows. By the triangle inequality

$$
\mathbf{v}_{j}-\mathbf{v}, \mathbf{v}-\mathbf{v}_{j} \leq \mathbf{v}_{j}-\mathbf{v}
$$

That is,

$$
\left|\mathbf{v}_{j}-\mathbf{v}\right| \leq \mathbf{v}_{j}-\mathbf{v} \leq C[\infty] \mathbf{v}_{j}-\mathbf{v} \rightarrow 0
$$

as $j \rightarrow \infty$. So $\mathbf{v}=0$. On the other hand \mathbf{v} is certainly non-zero, because the basis vectors \mathbf{e}_{j} are linearly independent and at least one of the coefficients c_{j} used to define \mathbf{v} has magnitude 1 . Since non-zero vectors must have non-zero norm, we have found our impasse and conclude that there really does exist $C>0$ such that

$$
[\infty] \mathbf{v} \leq C \mathbf{v}
$$

for every $v \in V$.
5. Give an example of two incomparable norms on the (infinite dimensional) vector space $C([0,1]$,) of continuous functions from $[0,1]$ to .

Solution: The norms

$$
[\infty] f \max _{x \in[0,1]}|f(x)| \text { and }[1] f \int_{0}^{1}|f(x)| d x
$$

are incomparable. Consider for instance the functions $f_{n}(x)=x^{n}$. We have

$$
[\infty] f_{n}=\left|f_{n}(1)\right|=1
$$

for every $n \in$, but

$$
[1] f_{n}=\frac{1}{n+1} \rightarrow 0
$$

Hence, there is no constant $C>0$ such that

$$
[\infty] f \leq C[1] f
$$

for all $f \in C([0,1]$,$) .$

