
Homework Set 1: Solutions

1. Find the operator norm of the linear transformations L :2→2 with matrices(
4 0
0 −4

)
and

(
1 1
1 0

)
.

Solution: Let L be the linear transformation corresponding to the first matrix and v = (x, y) be
a vector. Then

L(v) = (4x,−4y) =
√

(4x)2 + (−4y)2 = 4
√

x2 + y2 = 4v.

Hence L(v)/v = 4 regardless of v. It follows that L = 4.
Now let L be the linear transformation corresponding to the other matrix. Note that

L(tv)/tv = L(v)/v

for any t ∈. Hence

sup
v∈2

L(tv)/tv = sup{L(v)/v : v = (x, 1), x ∈}

= sup
x∈

√
(x + 1)2 + x2

x2 + 1

(OK, so I’m missing a multiple of the vector (1, 0), but you can check that one yourself, and anyhow
I actually do take care of it implicitly below when I let x → ±∞.). Call the function inside the
square root f(x). Then limx→±∞ f(x) = 2. Moreover, after differentiating, we see that f has
critical points when

x2 − x = 0 ⇒ x = 1, 0.

Since f(1) = 5/2 and f(0) = 1, we conclude that L =
√

5/2.

2. Let V be a vector space over the field (or ). A norm on V is a function · : V → such that for
all λ ∈ and v,w ∈ V ,

• v ≥ 0 with equality if and only if v = 0.
• λv = |λ|v
• v + w ≤ v + w.

Given a norm · on V , show that

d(v,w) = v −w

defines a metric on V . A set U is said to be open with respect to · if it is open with respect to the
associated metric d.

Solution: We first check that d is a metric. Clearly d(v,w) = v −w ≥ 0, and

v −w = 0 ⇔ v −w = 0 ⇔ v = w.

Symmetry of d follows from v −w = | − 1|w − v. Finally,

d(v,w) = v −w = (v − u)− (w − u) ≤ v − u + w − u = d(v,u) + d(u,w),
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so the triangle inequality holds. Thus d is a metric.

3. Different norms · and ·′ on the same vector space are called comparable if there are constants
C1, C2 > 0 such that

C1v ≤ v′ ≤ C2v

for all v ∈ V .
Supposing that ·, ·′ are comparable, show that a set U ⊂ V is open with respect to · if and only

if it is open with respect to ·′. Does the same conclusion hold if you replace ‘open’ with ‘closed’?
‘compact’? ‘connected’? Explain.

Solution: Let U ⊂ V be open with respect to · and v ∈ U . Then there exists r > 0 such that
Nr(v) = {w ∈ V : w − v < r} ⊂ U . But since

w − v′ ≤ r/C2 ⇒ w − v ≤ r,

we have N ′
r/C2

(v) ⊂ Nr(v) ⊂ U (where the prime denotes ‘neighborhood with respect to ·′. That
is, any v ∈ U admits a ·′ neighborhood also contained in U , so U is open with respect to ·′.

The same argument shows that if U is open with respect to ·′, then U is also open with respect
to ·. �

The conclusion also works for closed sets, compact sets, and connected sets, because all of these
can be characterized in terms of open sets (e.g. a set is closed iff it’s the complement of an open
set, etc, etc.)

4. Let n, m ∈+ be given and V = L(n,m ) be the vector space of linear transformations from n

to m. Let T = (aij) ∈ V be an arbitrary element. Show that the following norms on V are all
comparable to the operator norm on V .

• [∞]T = maxi,j |aij |
• [1]T =

∑
i,j |aij |

• [2]T =
√∑

i,j |aij |2

In fact, it can be shown that pretty much any two norms on a finite dimensional vector space are
comparable (Prove this and you take care of all the above items at once. And I’ll give you five
extra credit points).

Solution: Let a = max |aij |. Then

a =
√

a2 ≤
√∑

i,j

a2
ij ≤

√√√√√
∑

i,j

|aij |

2

=
∑
i,j

|aij | ≤ nma,

where nm is just the number of entries in T . Since all these inequalities hold regardless of T , this
shows that [∞]·, [2]· and [1]· are all comparable. To finish the proof it’s enough to show that · is
comparable to any one of these—say [∞]·.

If v = ej is one of the usual basis vectors, then

T (v) = (a1j , a2j , . . . , amj) =
√∑

i

a2
ij ≤

√∑
i

a2 =
√

ma,



and if v = v1e1 + . . . vnen is an arbitrary unit vector, then

T (v) =
∑

j

vjT (ej) ≤
∑

j

|vj |T (ej) ≤ n ·
√

ma

because |vj | ≤ 1 for all j. Hence

T (v) = sup
v=1

T (v) ≤ n
√

m[∞]T.

�

By the way,
Theorem. Any two norms on a finite dimensional real (or complex) vector space V are compa-
rable.

Proof. Let {e1, . . . , en} be a basis for V and [∞]· be the norm on V given by

[∞]v = max
1≤j≤n

|cj |

where the numbers cj come from writing v = c1e1 . . . cnen as a linear combination of basis vectors.
It is enough to show that any other norm · on V is comparable to [∞]·. Now on the one hand, we
have

v ≤ |c1|e1 + · · ·+ en ≤ n(max ej)[∞]v,

which gives comparability in one direction.
To get comparability in the other direction, I suppose for the sake of obtaining a contradiction

that for any C > 0 there exists v ∈ V such that [∞]v > Cv. Then in particular, by choosing a
sequence of C’s tending to ∞, we can find a sequence of vectors {vj} ⊂ V such that [∞]vj = 1
whereas limj→∞ vj = 0.

Given this, I claim that after passing to a subsequence, we can further assume that {vj} converges
to some vector v ∈ V . And I never claim anything that I can’t prove. Never. If we write

vj = c1je1 + . . . cnjen,

then the ‘coordinate vectors’ (c1j , . . . , cnj) ∈n all lie in the compact (because closed and bounded)
set {(x1, . . . , xn) ∈n: max |xk| = 1}, so after passing to a subsequence, we can assume that c1j → c1,
. . . cnj → cn where max |ck| = 1. But, from the definition of [∞]·, this is the same as saying that

lim
n→∞

[∞]vj − v = 0

where v = c1e1 + · · ·+ cnen. So the claim is true.
We get our contradiction as follows. By the triangle inequality

vj − v,v − vj ≤ vj − v.

That is,

|vj − v| ≤ vj − v ≤ C[∞]vj − v → 0

as j → ∞. So v = 0. On the other hand v is certainly non-zero, because the basis vectors ej are
linearly independent and at least one of the coefficients cj used to define v has magnitude 1. Since
non-zero vectors must have non-zero norm, we have found our impasse and conclude that there
really does exist C > 0 such that

[∞]v ≤ Cv



for every v ∈ V . �

5. Give an example of two incomparable norms on the (infinite dimensional) vector space C([0, 1], )
of continuous functions from [0, 1] to .

Solution: The norms

[∞]f max
x∈[0,1]

|f(x)| and [1]f
∫ 1

0
|f(x)| dx

are incomparable. Consider for instance the functions fn(x) = xn. We have

[∞]fn = |fn(1)| = 1

for every n ∈, but

[1]fn =
1

n + 1
→ 0.

Hence, there is no constant C > 0 such that

[∞]f ≤ C[1]f

for all f ∈ C([0, 1], ).


