Solutions to Homework 7

Beals page 5, \#4: The inequality

$$
m^{*}\left(A_{1} \cup A_{2}\right) \leq m^{*} A_{1}+m^{*} A_{2}
$$

holds for all $A_{1}, A_{2} \subset$, so it remains for me to use the hypothesis to prove the reverse inequality.

Given $\epsilon>0$, let \mathcal{I} be a finite or countable collections of intervals covering $A_{1} \cup A_{2}$ and satisfying

$$
|\mathcal{I}| \leq m^{*}\left(A_{1} \cup A_{2}\right)+\epsilon
$$

For each interval $I \in \mathcal{I}$, let $I^{\prime}=I \cap I_{1}$ and $I^{\prime \prime}=I \cap I_{2}$. Note that

- For any $I \in \mathcal{I}$, the corresponding sets I^{\prime} and $I^{\prime \prime}$ are open intervals satisfying

$$
\left|I^{\prime}\right|+\left|I^{\prime \prime}\right| \leq|I| .
$$

- $\mathcal{I}^{\prime}\left\{I^{\prime}: I \in \mathcal{I}\right\}$ covers A_{1}
- $\mathcal{I}^{\prime \prime}\left\{I^{\prime \prime}: I \in \mathcal{I}\right\}$ covers A_{2}.

Therefore,

$$
m^{*} A_{1}+m^{*} A_{2} \leq\left|\mathcal{I}^{\prime}\right|+\left|\mathcal{I}^{\prime \prime}\right| \leq|\mathcal{I}| \leq m^{*}\left(A_{1} \cup A_{2}\right)+\epsilon
$$

But $\epsilon>0$ was arbitrary, so I deduce that

$$
m^{*} A_{1}+m^{*} A_{2} \leq m^{*}\left(A_{1} \cup A_{2}\right)
$$

[11pt]article graphicx amssymb epstopdf

Beals page 5, \#7: The trick here is to remove smaller and smaller fractions of the remaining intervals as the construction progresses. Specifically, I define a decreasing sequence $\left\{C_{k}\right\}$ of closed sets $C_{k} \subset[0,1]$ as follows. First I choose a sequence $\left\{a_{j}\right\}_{j \in}$ of positive real numbers such that

$$
s:=\sum_{j=1}^{\infty} a_{j}<1
$$

I let $C_{0}=[0,1]$ and $D_{0}=[0,1]-C_{0}=\emptyset$. I divide C_{0} into two closed intervals of equal length by removing an open interval of length a_{1} centered at $1 / 2$. I call the union of the remaining closed intervals C_{1} and set $D_{1}=[0,1]-C_{1}$.

Likewise, given a closed set $C_{k} \subset[0,1]$ consisting of 2^{k} closed, pairwise disjoint intervals I of equal length, I create the set $C_{k+1} \subset C_{k}$ by removing from each interval $I \subset C_{k}$ an open
interval J centered on the midpoint of I such that $|J| \leq a_{k+1}|I|$. Thus, C_{k+1} consists of 2^{k+1} closed, pairwise disjoint intervals. Moreover, since the sum of the lengths of the closed intervals comprising C_{k} is no greater than one, it follows that the sum of the lengths of the intervals removed from C_{k} to create C_{k+1} is no larger than a_{k+1}. Stated in terms of the complements D_{k} and D_{k+1} of C_{k} and C_{k+1} in [0, 1], I have

$$
m^{*} D_{k+1} \leq m^{*} D_{k}+a_{k+1} .
$$

Now if I let $C=\bigcap_{k \in} C_{k}$ and $D=\bigcup_{k \in} D_{k}$, I have $C \cup D=[0,1]$. Hence

$$
m^{*} C \geq 1-m^{*} D \geq 1-\sum_{k=0}^{\infty} m^{*}\left(D_{k}-D_{k-1}\right) \geq 1-\sum_{k=0}^{\infty} a_{k}=1-s>0
$$

