Solutions to Homework 8

[11pt]article graphicx amssymb epstopdf

Beals, page 22 #9: No, it's not always true. Consider for example the function $f:\to$ which is zero everywhere except on intervals of the form $[n-1/n^2,n+1/n^2], n\in$; and on such an interval the graph of f is the pair of lines joining the points $(n-1/n^2,0)$ and $(n+1/n^2,0)$ to the point (n,1). Then f is continuous and f(n)=1 for every $n\in$, so $\lim_{x\to\infty}f(x)\neq 0$ (in fact, the limit doesn't exist). However,

$$\int f = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$