Math 366, Winter '03

 Homework 3From Rudin. pp 239-241: 9, 14abd, 16, 17

Profs Personal Problems:

1. Consider the mapping $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by

$$
f(x, y)=\left(\sin x-\cos y, e^{x}+e^{y}\right) .
$$

Note that $f(0,0)=(-1,2)$.

- Show that f is locally invertible near $(0,0)$ and give a linear approximation for f^{-1}.
- Find, to three decimal places of accuracy a point (x, y) near $(0,0)$ such that $f(x, y)=$ $(-1.02,1.97)$. (Show all intermediate approximations to (x, y) and at least enough work to explain how you're getting them.)

