Math 366, Winter '03 Homework 5

Profs Personal Problems:

1. Consider the set $C=\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}-y^{2}-z^{2}=0\right\}$ At which points does C fail to be an embedded submanifold? What is the dimension and codimension of C ? Draw a picture of C.
2. Consider the function $h: \mathbf{R} \rightarrow \mathbf{R}^{2}$ given by $h(t)=\left(t^{2}, t^{3}\right)$ and the set $C=h(\mathbf{R}) \subset \mathbf{R}^{2}$.

- At which points does C fail to be a submanifold of \mathbf{R}^{2} ?
- Describe the tangent space to C at the point $(1,-1)$.
- Draw a picture of C.

3. Consider the following set

$$
M:=\left\{(x, y, z, w) \in \mathbf{R}^{4}: x^{2}-y^{2}-z w=1, z y+w x=0\right\}
$$

- At which points does M fail to be an embedded submanifold of \mathbf{R}^{4}.
- What is the dimension and codimension of M ?
- Describe (i.e. give a basis for) the tangent space of M at the point $(1,1,0,0)$.
- Draw a picture of M. Full color. Stereo sound.

4. (One more time) Consider the function

$$
f(x, y)=\left(x^{3}-2 x^{2} y+y, y^{3}-2 x^{2}\right)
$$

Observe that $f(1,1)=(0,-1)$ and verify that f has a local inverse satisfying $f^{-1}(0,-1)=(1,1)$. Starting with a guess of $\left(x_{0}, y_{0}\right)=(1,1)$, compute two (increasingly better) approximations of the point $(x, y)=f^{-1}(.1,-.8)$.

