Solutions to Homework 7

Beals page 5, #4: The inequality

$$m^*(A_1 \cup A_2) \le m^*A_1 + m^*A_2$$

holds for all $A_1, A_2 \subset \mathbf{R}$, so it remains for me to use the hypothesis to prove the reverse inequality.

Given $\epsilon > 0$, let \mathcal{I} be a finite or countable collections of intervals covering $A_1 \cup A_2$ and satisfying

$$|\mathcal{I}| \le m^*(A_1 \cup A_2) + \epsilon.$$

For each interval $I \in \mathcal{I}$, let $I' = I \cap I_1$ and $I'' = I \cap I_2$. Note that

• For any $I \in \mathcal{I}$, the corresponding sets I' and I'' are open intervals satisfying

$$|I'| + |I''| \le |I|.$$

• $\mathcal{I}' := \{I' : I \in \mathcal{I}\}$ covers A_1

• $\mathcal{I}'' := \{I'' : I \in \mathcal{I}\}$ covers A_2 .

Therefore,

$$m^*A_1 + m^*A_2 \le |\mathcal{I}'| + |\mathcal{I}''| \le |\mathcal{I}| \le m^*(A_1 \cup A_2) + \epsilon.$$

But $\epsilon > 0$ was arbitrary, so I deduce that

$$m^*A_1 + m^*A_2 \le m^*(A_1 \cup A_2)$$

Beals page 5, #7: The trick here is to remove smaller and smaller fractions of the remaining intervals as the construction progresses. Specifically, I define a decreasing sequence $\{C_k\}$ of closed sets $C_k \subset [0,1]$ as follows. First I choose a sequence $\{a_j\}_{j\in\mathbb{N}}$ of positive real numbers such that

$$s := \sum_{j=1}^{\infty} a_j < 1.$$

I let $C_0 = [0, 1]$ and $D_0 = [0, 1] - C_0 = \emptyset$. I divide C_0 into two closed intervals of equal length by removing an open interval of length a_1 centered at 1/2. I call the union of the remaining closed intervals C_1 and set $D_1 = [0, 1] - C_1$.

Likewise, given a closed set $C_k \subset [0,1]$ consisting of 2^k closed, pairwise disjoint intervals I of equal length, I create the set $C_{k+1} \subset C_k$ by removing from each interval $I \subset C_k$ an open interval J centered on the midpoint of I such that $|J| \leq a_{k+1}|I|$. Thus, C_{k+1} consists of 2^{k+1} closed, pairwise disjoint intervals. Moreover, since the sum of the lengths of the closed intervals comprising C_k is no greater than one, it follows that the sum of the lengths of the

intervals removed from C_k to create C_{k+1} is no larger than a_{k+1} . Stated in terms of the complements D_k and D_{k+1} of C_k and C_{k+1} in [0,1], I have

$$m^*D_{k+1} \le m^*D_k + a_{k+1}.$$

Now if I let $C = \bigcap_{k \in \mathbb{N}} C_k$ and $D = \bigcup_{k \in \mathbb{N}} D_k$, I have $C \cup D = [0, 1]$. Hence

$$m^*C \ge 1 - m^*D \ge 1 - \sum_{k=0}^{\infty} m^*(D_k - D_{k-1}) \ge 1 - \sum_{k=0}^{\infty} a_k = 1 - s > 0.$$

Beals page 5, #9: Note that m^*A is finite because A is bounded. Suppose, in order to obtain a contradiction, that $m^*A \neq 0$. Then (by setting $\epsilon = m^*A > 0$), I can find a countable collection $\mathcal{I} = \{I_k\}_{k \in \mathbb{N}}$ of open intervals covering A such that $|\mathcal{I}| < m^*A + \epsilon = 2m^*A$. But then

$$m^*A \ge \sum_{k=1}^{\infty} m^*(A \cap I_k) \le \frac{1}{2} \sum_{k=1}^{\infty} |I_k| = \frac{1}{2} |\mathcal{I}| < m^*A.$$

This contradiction proves that $m^*A = 0$.

Beals page 11, #1: If $E \subset \mathbf{R}$ is any set, then

$$m^*E \le m^*(E \cap A) + m^*(E \cap A^c)$$

automatically, regardless of m^*A . On the other hand, since $m^*A = 0$,

$$m^*(E \cap A) + m^*(E \cap A^c) \le m^*A + m^*E = m^*E.$$

Hence $m^*E = m^*(E \cap A) + m^*(E \cap A^c)$ for all $E \subset \mathbf{R}$. That is, A is measurable.

Beals page 11, #4: For example, $A_n = [n, \infty)$.

Beals page 11, #6:

- a) Let $A_n = [0, 1]$ if $n \in \mathbb{N}$ is even and $A_n = \emptyset$ if n is odd. Then $\limsup A_n = [0, 1]$ and $\liminf A_n = \emptyset$.
- b) I show only that $\limsup A_n$ is measurable. The proof for $\liminf A_n$ is similar. For each $N \in \mathbb{N}$, let

$$B_N = \bigcup_{n > N} A_n$$

Then B_N and $B := \bigcap_{N \in \mathbb{N}} B_N$ are measurable by assertion I on page 9 of Beals notes. I claim that $B = \limsup A_n$. To see that this is so, let $x \in B$. Then $x \in B_N$ for every $N \in \mathbb{N}$. In other words, for each $N \in \mathbb{N}$, there exists $n \geq N$ such that $x \in A_n$. This can only be the case if $x \in A_n$ for infinitely many n (otherwise, we could let N be one larger than the maximum of those finitely many n for which $x \in A_n$, and it would follow that $x \notin B_N$). So $x \in \limsup A_n$.

In the other direction, suppose that $x \notin B$. Then $x \notin B_N$ for some $N \in \mathbb{N}$. Then $x \in A_n$ for at most N values of n. It follows that $x \notin \limsup A_n$. This and the preceding paragraph show that $x \in B$ if and only if $x \in \limsup A_n$, so the two sets are equal, and I conclude that $\limsup A_n$ is measurable.

Beals page 11, #7: The function d(A, B) is symmetric in A and B, because $A\triangle B = B\triangle A$. For transitivity, consider sets $A, B, C \subset \mathbf{R}$ and let $x \in A\triangle C$ be any element. Say for instance (and with no loss of generality) that $x \in A$ but $x \notin C$. Then if $x \in B$, it follows that $x \in B\triangle C$; and if $x \notin B$, it follows that $x \in A\triangle B$. Either way, $x \in A\triangle B \cup B\triangle C$. This proves that

$$A\triangle C \subset A\triangle B \cup B\triangle C$$
,

Consequently,

$$m(A\triangle C) \le m(A\triangle B) + m(B\triangle C).$$

It follows that d is transitive and a semi-metric.