
Solutions to Homework 7

Beals page 5, #4: The inequality

m∗(A1 ∪ A2) ≤ m∗A1 + m∗A2

holds for all A1, A2 ⊂ R, so it remains for me to use the hypothesis to prove the reverse
inequality.

Given ε > 0, let I be a finite or countable collections of intervals covering A1 ∪ A2 and
satisfying

|I| ≤ m∗(A1 ∪ A2) + ε.

For each interval I ∈ I, let I ′ = I ∩ I1 and I ′′ = I ∩ I2. Note that

• For any I ∈ I, the corresponding sets I ′ and I ′′ are open intervals satisfying

|I ′|+ |I ′′| ≤ |I|.

.

• I ′ := {I ′ : I ∈ I} covers A1

• I ′′ := {I ′′ : I ∈ I} covers A2.

Therefore,
m∗A1 + m∗A2 ≤ |I ′|+ |I ′′| ≤ |I| ≤ m∗(A1 ∪ A2) + ε.

But ε > 0 was arbitrary, so I deduce that

m∗A1 + m∗A2 ≤ m∗(A1 ∪ A2)

Beals page 5, #7: The trick here is to remove smaller and smaller fractions of the remaining
intervals as the construction progresses. Specifically, I define a decreasing sequence {Ck} of
closed sets Ck ⊂ [0, 1] as follows. First I choose a sequence {aj}j∈N of positive real numbers
such that

s :=
∞∑

j=1

aj < 1.

I let C0 = [0, 1] and D0 = [0, 1]−C0 = ∅. I divide C0 into two closed intervals of equal length
by removing an open interval of length a1 centered at 1/2. I call the union of the remaining
closed intervals C1 and set D1 = [0, 1]− C1.

Likewise, given a closed set Ck ⊂ [0, 1] consisting of 2k closed, pairwise disjoint intervals
I of equal length, I create the set Ck+1 ⊂ Ck by removing from each interval I ⊂ Ck an open
interval J centered on the midpoint of I such that |J | ≤ ak+1|I|. Thus, Ck+1 consists of
2k+1 closed, pairwise disjoint intervals. Moreover, since the sum of the lengths of the closed
intervals comprising Ck is no greater than one, it follows that the sum of the lengths of the



intervals removed from Ck to create Ck+1 is no larger than ak+1. Stated in terms of the
complements Dk and Dk+1 of Ck and Ck+1 in [0, 1], I have

m∗Dk+1 ≤ m∗Dk + ak+1.

Now if I let C =
⋂

k∈N Ck and D =
⋃

k∈N Dk, I have C ∪D = [0, 1]. Hence

m∗C ≥ 1−m∗D ≥ 1−
∞∑

k=0

m∗(Dk −Dk−1) ≥ 1−
∞∑

k=0

ak = 1− s > 0.

Beals page 5, #9: Note that m∗A is finite because A is bounded. Suppose, in order to
obtain a contradiction, that m∗A 6= 0. Then (by setting ε = m∗A > 0), I can find a countable
collection I = {Ik}k∈N of open intervals covering A such that |I| < m∗A + ε = 2m∗A. But
then

m∗A ≥
∞∑

k=1

m∗(A ∩ Ik) ≤
1

2

∞∑
k=1

|Ik| =
1

2
|I| < m∗A.

This contradiction proves that m∗A = 0. �

Beals page 11, #1: If E ⊂ R is any set, then

m∗E ≤ m∗(E ∩ A) + m∗(E ∩ Ac)

automatically, regardless of m∗A. On the other hand, since m∗A = 0,

m∗(E ∩ A) + m∗(E ∩ Ac) ≤ m∗A + m∗E = m∗E.

Hence m∗E = m∗(E ∩ A) + m∗(E ∩ Ac) for all E ⊂ R. That is, A is measurable. �

Beals page 11, #4: For example, An = [n,∞).

Beals page 11, #6:

a) Let An = [0, 1] if n ∈ N is even and An = ∅ if n is odd. Then lim sup An = [0, 1] and
lim inf An = ∅.

b) I show only that lim sup An is measurable. The proof for lim inf An is similar. For each
N ∈ N, let

BN =
⋃

n≥N

An

Then BN and B := ∩N∈NBN are measurable by assertion I on page 9 of Beals notes.

I claim that B = lim sup An. To see that this is so, let x ∈ B. Then x ∈ BN for every
N ∈ N. In other words, for each N ∈ N, there exists n ≥ N such that x ∈ An. This



can only be the case if x ∈ An for infinitely many n (otherwise, we could let N be
one larger than the maximum of those finitely many n for which x ∈ An, and it would
follow that x /∈ BN). So x ∈ lim sup An.

In the other direction, suppose that x /∈ B. Then x /∈ BN for some N ∈ N. Then
x ∈ An for at most N values of n. It follows that x /∈ lim sup An. This and the
preceding paragraph show that x ∈ B if and only if x ∈ lim sup An, so the two sets are
equal, and I conclude that lim sup An is measurable. �

Beals page 11, #7: The function d(A, B) is symmetric in A and B, because A4B = B4A.
For transitivity, consider sets A, B, C ⊂ R and let x ∈ A4C be any element. Say for

instance (and with no loss of generality) that x ∈ A but x /∈ C. Then if x ∈ B, it follows
that x ∈ B4C; and if x /∈ B, it follows that x ∈ A4B. Either way, x ∈ A4B∪B4C. This
proves that

A4C ⊂ A4B ∪B4C,

Consequently,
m(A4C) ≤ m(A4B) + m(B4C).

It follows that d is transitive and a semi-metric. �


