Solutions to Homework 7

Beals page 5, \#4: The inequality

$$
m^{*}\left(A_{1} \cup A_{2}\right) \leq m^{*} A_{1}+m^{*} A_{2}
$$

holds for all $A_{1}, A_{2} \subset \mathbf{R}$, so it remains for me to use the hypothesis to prove the reverse inequality.

Given $\epsilon>0$, let \mathcal{I} be a finite or countable collections of intervals covering $A_{1} \cup A_{2}$ and satisfying

$$
|\mathcal{I}| \leq m^{*}\left(A_{1} \cup A_{2}\right)+\epsilon
$$

For each interval $I \in \mathcal{I}$, let $I^{\prime}=I \cap I_{1}$ and $I^{\prime \prime}=I \cap I_{2}$. Note that

- For any $I \in \mathcal{I}$, the corresponding sets I^{\prime} and $I^{\prime \prime}$ are open intervals satisfying

$$
\left|I^{\prime}\right|+\left|I^{\prime \prime}\right| \leq|I| .
$$

- $\mathcal{I}^{\prime}:=\left\{I^{\prime}: I \in \mathcal{I}\right\}$ covers A_{1}
- $\mathcal{I}^{\prime \prime}:=\left\{I^{\prime \prime}: I \in \mathcal{I}\right\}$ covers A_{2}.

Therefore,

$$
m^{*} A_{1}+m^{*} A_{2} \leq\left|\mathcal{I}^{\prime}\right|+\left|\mathcal{I}^{\prime \prime}\right| \leq|\mathcal{I}| \leq m^{*}\left(A_{1} \cup A_{2}\right)+\epsilon
$$

But $\epsilon>0$ was arbitrary, so I deduce that

$$
m^{*} A_{1}+m^{*} A_{2} \leq m^{*}\left(A_{1} \cup A_{2}\right)
$$

Beals page 5, \#7: The trick here is to remove smaller and smaller fractions of the remaining intervals as the construction progresses. Specifically, I define a decreasing sequence $\left\{C_{k}\right\}$ of closed sets $C_{k} \subset[0,1]$ as follows. First I choose a sequence $\left\{a_{j}\right\}_{j \in \mathbf{N}}$ of positive real numbers such that

$$
s:=\sum_{j=1}^{\infty} a_{j}<1
$$

I let $C_{0}=[0,1]$ and $D_{0}=[0,1]-C_{0}=\emptyset$. I divide C_{0} into two closed intervals of equal length by removing an open interval of length a_{1} centered at $1 / 2$. I call the union of the remaining closed intervals C_{1} and set $D_{1}=[0,1]-C_{1}$.

Likewise, given a closed set $C_{k} \subset[0,1]$ consisting of 2^{k} closed, pairwise disjoint intervals I of equal length, I create the set $C_{k+1} \subset C_{k}$ by removing from each interval $I \subset C_{k}$ an open interval J centered on the midpoint of I such that $|J| \leq a_{k+1}|I|$. Thus, C_{k+1} consists of 2^{k+1} closed, pairwise disjoint intervals. Moreover, since the sum of the lengths of the closed intervals comprising C_{k} is no greater than one, it follows that the sum of the lengths of the
intervals removed from C_{k} to create C_{k+1} is no larger than a_{k+1}. Stated in terms of the complements D_{k} and D_{k+1} of C_{k} and C_{k+1} in [0, 1], I have

$$
m^{*} D_{k+1} \leq m^{*} D_{k}+a_{k+1} .
$$

Now if I let $C=\bigcap_{k \in \mathbf{N}} C_{k}$ and $D=\bigcup_{k \in \mathbf{N}} D_{k}$, I have $C \cup D=[0,1]$. Hence

$$
m^{*} C \geq 1-m^{*} D \geq 1-\sum_{k=0}^{\infty} m^{*}\left(D_{k}-D_{k-1}\right) \geq 1-\sum_{k=0}^{\infty} a_{k}=1-s>0
$$

Beals page 5, \#9: Note that $m^{*} A$ is finite because A is bounded. Suppose, in order to obtain a contradiction, that $m^{*} A \neq 0$. Then (by setting $\epsilon=m^{*} A>0$), I can find a countable collection $\mathcal{I}=\left\{I_{k}\right\}_{k \in \mathbf{N}}$ of open intervals covering A such that $|\mathcal{I}|<m^{*} A+\epsilon=2 m^{*} A$. But then

$$
m^{*} A \geq \sum_{k=1}^{\infty} m^{*}\left(A \cap I_{k}\right) \leq \frac{1}{2} \sum_{k=1}^{\infty}\left|I_{k}\right|=\frac{1}{2}|\mathcal{I}|<m^{*} A
$$

This contradiction proves that $m^{*} A=0$.

Beals page 11, $\# 1$: If $E \subset \mathbf{R}$ is any set, then

$$
m^{*} E \leq m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)
$$

automatically, regardless of $m^{*} A$. On the other hand, since $m^{*} A=0$,

$$
m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) \leq m^{*} A+m^{*} E=m^{*} E .
$$

Hence $m^{*} E=m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)$ for all $E \subset \mathbf{R}$. That is, A is measurable.

Beals page 11, \#4: For example, $A_{n}=[n, \infty)$.

Beals page 11, \#6:

a) Let $A_{n}=[0,1]$ if $n \in \mathbf{N}$ is even and $A_{n}=\emptyset$ if n is odd. Then $\limsup A_{n}=[0,1]$ and $\lim \inf A_{n}=\emptyset$.
b) I show only that $\lim \sup A_{n}$ is measurable. The proof for $\lim \inf A_{n}$ is similar. For each $N \in \mathbf{N}$, let

$$
B_{N}=\bigcup_{n \geq N} A_{n}
$$

Then B_{N} and $B:=\cap_{N \in \mathbf{N}} B_{N}$ are measurable by assertion I on page 9 of Beals notes. I claim that $B=\lim \sup A_{n}$. To see that this is so, let $x \in B$. Then $x \in B_{N}$ for every $N \in \mathbf{N}$. In other words, for each $N \in \mathbf{N}$, there exists $n \geq N$ such that $x \in A_{n}$. This
can only be the case if $x \in A_{n}$ for infinitely many n (otherwise, we could let N be one larger than the maximum of those finitely many n for which $x \in A_{n}$, and it would follow that $x \notin B_{N}$). So $x \in \lim \sup A_{n}$.
In the other direction, suppose that $x \notin B$. Then $x \notin B_{N}$ for some $N \in \mathbf{N}$. Then $x \in A_{n}$ for at most N values of n. It follows that $x \notin \limsup A_{n}$. This and the preceding paragraph show that $x \in B$ if and only if $x \in \lim \sup A_{n}$, so the two sets are equal, and I conclude that $\lim \sup A_{n}$ is measurable.

Beals page 11, \#7: The function $d(A, B)$ is symmetric in A and B, because $A \triangle B=B \triangle A$.
For transitivity, consider sets $A, B, C \subset \mathbf{R}$ and let $x \in A \triangle C$ be any element. Say for instance (and with no loss of generality) that $x \in A$ but $x \notin C$. Then if $x \in B$, it follows that $x \in B \triangle C$; and if $x \notin B$, it follows that $x \in A \triangle B$. Either way, $x \in A \triangle B \cup B \triangle C$. This proves that

$$
A \triangle C \subset A \triangle B \cup B \triangle C
$$

Consequently,

$$
m(A \triangle C) \leq m(A \triangle B)+m(B \triangle C)
$$

It follows that d is transitive and a semi-metric.

