## Solutions to Homework 8

Beals, page $2 \mathbf{2 2} \# \mathbf{9}$ : No, it's not always true. Consider for example the function $f: \mathbf{R} \rightarrow \mathbf{R}$ which is zero everywhere except on intervals of the form $\left[n-1 / n^{2}, n+1 / n^{2}\right], n \in \mathbf{N}$; and on such an interval the graph of $f$ is the pair of lines joining the points $\left(n-1 / n^{2}, 0\right)$ and $\left(n+1 / n^{2}, 0\right)$ to the point $(n, 1)$. Then $f$ is continuous and $f(n)=1$ for every $n \in \mathbf{N}$, so $\lim _{x \rightarrow \infty} f(x) \neq 0$ (in fact, the limit doesn't exist). However,

$$
\int f=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

Beals, page 25, \#2:
(a) Note that for $n, x \geq 0$, we have

$$
e^{n x}=\sum_{j=0}^{\infty} \frac{(n x)^{j}}{j!} \leq \frac{n^{2} x^{2}}{2}
$$

Therefore, $n^{2} x^{2} / e^{n x} \leq 2$ for all $n \in \mathbf{N}$ and all $x \in[0,1]$. In other words, for $x \in[0,1]$ we have $\left|n^{2} x^{2} / e^{n x}\right| \leq g(x)$, where $g(x):=2 \cdot \mathbf{1}_{[0,1]}$.
Moreover, $\lim _{n \rightarrow \infty} n^{2} x^{2} / e^{n x} \rightarrow 0$ for every $x \in[0,1]$ (use L'hôpital's rule, differentiating with respect to $n$, for instance). So we can apply the dominated convergence theorem to conclude

$$
\lim _{n \rightarrow \infty} \int \frac{n^{2} x^{2}}{e^{n x}}=\int \lim _{n \rightarrow \infty} \frac{n^{2} x^{2}}{e^{n x}}=\int 0=0
$$

(c) Since $\log (1+t) \leq t$ for $t \geq 0$ and $e^{s}$ is increasing in $s$, we have

$$
\left(1+\frac{x}{n}\right)^{n}=e^{n \log \left(1+\frac{x}{n}\right)} \leq e^{n \cdot(x / n)}=e^{x} .
$$

Hence for all $n \in \mathbf{N}$,

$$
\left(1+\frac{x}{n}\right)^{n} e^{-\alpha x} \leq e^{(1-\alpha) x}
$$

where the right hand side is integrable on $[0, \infty)$ for $\alpha>1$. It follows from this and the dominated convergence theorem that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{n} e^{-\alpha x}=\int_{0}^{\infty} \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} e^{-\alpha x}=\int_{0}^{\infty} e^{(1-\alpha) x}=\frac{1}{\alpha-1}
$$

Beals, page $25 \# 3$ : Note that since $f$ is integrable and $F(y)-F(x) \leq \int_{x}^{y}|f|$, there is no loss of generality in what follows if we assume that $f \geq 0$.
(a) Let $\left\{x_{n}\right\} \subset \mathbf{R}$ be any sequence converging to $x$. Let $I_{n}$ be the closed interval of points between $x_{n}$ and $x$. Then

$$
F\left(x_{n}\right)-F(x)=\int_{I_{n}} f=\int \mathbf{1}_{I_{n}} f .
$$

Now the function $g_{n}:=\mathbf{1}_{I_{n}} f$ satisfies $\left|g_{n}\right| \leq g:=|f|$ for all $n \in \mathbf{N}$. Moreover, $\lim _{n \rightarrow \infty} g_{n}(y)=0$ for all $y \neq x$. Therefore,

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)-F(x)=\lim _{n \rightarrow \infty} \int g_{n}=\int \lim _{n \rightarrow \infty} g_{n}=\int 0=0
$$

In other words $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F(x)$, which means that $F$ is continuous at $x$.
(b) $F$ must be uniformly continuous, too. To see this, note that (since $f \geq 0$ ) $F$ increases from $\lim _{x \rightarrow-\infty} F(x)=0$ to

$$
M:=\lim _{x \rightarrow \infty} F(x)=\int f<\infty
$$

So if $\epsilon>0$ is given, then there is some number $T$ such that $M-\epsilon / 2<F(x)<M$ for all $x \geq T$ and similarly $0<F(x)<\epsilon / 2$ for all $x<-T$. In particular, if $x, y>T$ or $x, y<-T$, we have $|F(x)-F(y)|<\epsilon / 2$.
Moreover, $F$ is uniformly continuous on the compact set $[-T, T$ ], so there is $\delta>0$ such that $x, y \in[0, T]$ and $|x-y|<\delta$ implies that

$$
|F(x)-F(y)|<\epsilon / 2
$$

Now if by chance $|x-y|<\delta$ and, say, $|x|<T$ while $|y|>T$, we have either $-T$ or $T$ between $x$ and $y$-say, for argument's sake it's $T$. Then

$$
|F(x)-F(y)| \leq|F(x)-F(T)|+|F(T)-F(y)|<\epsilon / 2+\epsilon / 2=\epsilon .
$$

So in all cases, $|x-y|<\delta$ implies that $|F(x)-F(y)|<\epsilon$, and $F$ is uniformly continuous.

Beals, page $25 \# 5$ : Set $g_{n}(x)=\inf _{j \geq n} f_{j}(x)$. Then for all $n \in \mathbf{N}$ and $x \in \mathbf{R}$,

- $\liminf f_{n}(x)=\lim g_{n}(x)$,
- $0 \leq g_{n}(x) \leq f_{n}(x)$,
- $g_{n+1}(x) \geq g_{n}(x)$

The second and third items allow us to apply the monotone convergence theorem to $g_{n}$ and obtain

$$
\int \liminf f_{n}=\int \lim g_{n}=\lim \int g_{n}=\liminf \int g_{n} \leq \liminf \int f_{n}
$$

Beals, page $25 \# \mathbf{6}$ : Let $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be the 'tent' function.

$$
f_{n}(x)=\left\{\begin{array}{rcl}
n^{2} x & \text { if } & 0 \leq x \leq 1 / n \\
2 n-n^{2} x & \text { if } & 1 / n \leq x \leq 2 / n \\
0 & \text { otherwise } &
\end{array}\right.
$$

Then

$$
\liminf \int f_{n}(x)=\liminf 1>0=\int 0=\int \lim f_{n}=\int \liminf f_{n}
$$

Beals, page $27 \# 1$ : By the monotone convergence theorem, we have

$$
\infty>\lim \int f_{n}=\int \lim f_{n}=\int f
$$

So by the proposition on page 27 , it follows that $f$ is finite a.e.

Beals, page $34 \# 2$ : The assertion is false. To see this, consider the function which is zero except on closed intervals $\left[n-1 / 4^{n}, n+1 / 4^{n}\right], n \geq 2$. And to define $f$ on each of these intervals take $f(n)=2^{n}$ and then make $f$ linear on each of the remaining subintervals (i.e. the graph of $f$ on the interval is a triangle of height $2^{n}$ and width $2 / 4^{n}$ ). Then on the one hand $\lim _{n \rightarrow \infty} f(n)=\lim 2^{n}=\infty$, so $f$ is not bounded. But on the other hand,

$$
\int f=\sum_{n=2}^{\infty} \frac{1}{2} \frac{2}{4^{n}} 2^{n}=\sum_{n=2}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}<\infty
$$

Beals, page $34 \# 3$ : Let $\epsilon>0$ be given. By Theorem 2 on page 33, there is a continuous, compactly supported function $g$ such that $\|g-f\|_{1}<\epsilon / 4$. Note that in fact $\left\|g_{a}-f_{a}\right\|_{1}=$ $\|g-f\|_{1}<\epsilon / 4$ for all $a \in \mathbf{R}$.

Let $M>0$ be chosen so that $g \equiv 0$ outside $[-M, M]$. Because $g$ has compact support, it is uniformly continuous. So I can choose $\delta>0$ so that $|x-y|<\delta$ implies that $|g(x)-g(y)|<$ $\epsilon / 8 M$. I can, of course, assume that $\delta<M$, too. Therefore, if $|a|<\delta$, it follows that $g_{a} \equiv 0$ outside $[-2 M, 2 M]$ and

$$
\begin{aligned}
\left\|f-f_{a}\right\|_{1} & \leq\|f-g\|_{1}+\left\|g-g_{a}\right\|_{1}+\left\|f_{a}-g_{a}\right\|_{1} \\
& <\frac{\epsilon}{4}+\int_{-2 M}^{2 M}(g(x)-g(x-a))+\frac{\epsilon}{4} \\
& <\frac{\epsilon}{2}+\int_{-2 M}^{2 M} \frac{\epsilon}{8 M}=\epsilon .
\end{aligned}
$$

This proves that $\lim _{a \rightarrow 0}\left\|f-f_{a}\right\|_{1}=0$.

