
Solutions to Homework 8

Beals, page 22 #9: No, it’s not always true. Consider for example the function f : R → R
which is zero everywhere except on intervals of the form [n − 1/n2, n + 1/n2], n ∈ N; and
on such an interval the graph of f is the pair of lines joining the points (n − 1/n2, 0) and
(n + 1/n2, 0) to the point (n, 1). Then f is continuous and f(n) = 1 for every n ∈ N, so
limx→∞ f(x) 6= 0 (in fact, the limit doesn’t exist). However,∫

f =
∞∑

n=1

1

n2
< ∞.

Beals, page 25, #2:

(a) Note that for n, x ≥ 0, we have

enx =
∞∑

j=0

(nx)j

j!
≤ n2x2

2
.

Therefore, n2x2/enx ≤ 2 for all n ∈ N and all x ∈ [0, 1]. In other words, for x ∈ [0, 1]
we have |n2x2/enx| ≤ g(x), where g(x) := 2 · 1[0,1].

Moreover, limn→∞ n2x2/enx → 0 for every x ∈ [0, 1] (use L’hôpital’s rule, differentiating
with respect to n, for instance). So we can apply the dominated convergence theorem
to conclude

lim
n→∞

∫
n2x2

enx
=

∫
lim

n→∞

n2x2

enx
=

∫
0 = 0.

(c) Since log(1 + t) ≤ t for t ≥ 0 and es is increasing in s, we have(
1 +

x

n

)n

= en log(1+ x
n) ≤ en·(x/n) = ex.

Hence for all n ∈ N, (
1 +

x

n

)n

e−αx ≤ e(1−α)x,

where the right hand side is integrable on [0,∞) for α > 1. It follows from this and
the dominated convergence theorem that

lim
n→∞

∫ ∞

0

(
1 +

x

n

)n

e−αx =

∫ ∞

0

lim
n→∞

(
1 +

x

n

)n

e−αx =

∫ ∞

0

e(1−α)x =
1

α− 1
.

Beals, page 25 #3: Note that since f is integrable and F (y)− F (x) ≤
∫ y

x
|f |, there is no

loss of generality in what follows if we assume that f ≥ 0.



(a) Let {xn} ⊂ R be any sequence converging to x. Let In be the closed interval of points
between xn and x. Then

F (xn)− F (x) =

∫
In

f =

∫
1Inf.

Now the function gn := 1Inf satisfies |gn| ≤ g := |f | for all n ∈ N. Moreover,
limn→∞ gn(y) = 0 for all y 6= x. Therefore,

lim
n→∞

F (xn)− F (x) = lim
n→∞

∫
gn =

∫
lim

n→∞
gn =

∫
0 = 0.

In other words limn→∞ F (xn) = F (x), which means that F is continuous at x. �

(b) F must be uniformly continuous, too. To see this, note that (since f ≥ 0) F increases
from limx→−∞ F (x) = 0 to

M := lim
x→∞

F (x) =

∫
f < ∞.

So if ε > 0 is given, then there is some number T such that M − ε/2 < F (x) < M for
all x ≥ T and similarly 0 < F (x) < ε/2 for all x < −T . In particular, if x, y > T or
x, y < −T , we have |F (x)− F (y)| < ε/2.

Moreover, F is uniformly continuous on the compact set [−T, T ], so there is δ > 0 such
that x, y ∈ [0, T ] and |x− y| < δ implies that

|F (x)− F (y)| < ε/2.

Now if by chance |x− y| < δ and, say, |x| < T while |y| > T , we have either −T or T
between x and y—say, for argument’s sake it’s T . Then

|F (x)− F (y)| ≤ |F (x)− F (T )|+ |F (T )− F (y)| < ε/2 + ε/2 = ε.

So in all cases, |x−y| < δ implies that |F (x)−F (y)| < ε, and F is uniformly continuous.
�

Beals, page 25 #5: Set gn(x) = infj≥n fj(x). Then for all n ∈ N and x ∈ R,

• lim inf fn(x) = lim gn(x),

• 0 ≤ gn(x) ≤ fn(x),

• gn+1(x) ≥ gn(x)

The second and third items allow us to apply the monotone convergence theorem to
gn and obtain∫

lim inf fn =

∫
lim gn = lim

∫
gn = lim inf

∫
gn ≤ lim inf

∫
fn.



Beals, page 25 #6: Let fn : R → R be the ‘tent’ function.

fn(x) =


n2x if 0 ≤ x ≤ 1/n

2n− n2x if 1/n ≤ x ≤ 2/n
0 otherwise

Then

lim inf

∫
fn(x) = lim inf 1 > 0 =

∫
0 =

∫
lim fn =

∫
lim inf fn.

Beals, page 27 #1: By the monotone convergence theorem, we have

∞ > lim

∫
fn =

∫
lim fn =

∫
f.

So by the proposition on page 27, it follows that f is finite a.e. �

Beals, page 34 #2: The assertion is false. To see this, consider the function which is zero
except on closed intervals [n − 1/4n, n + 1/4n], n ≥ 2. And to define f on each of these
intervals take f(n) = 2n and then make f linear on each of the remaining subintervals (i.e.
the graph of f on the interval is a triangle of height 2n and width 2/4n). Then on the one
hand limn→∞ f(n) = lim 2n = ∞, so f is not bounded. But on the other hand,∫

f =
∞∑

n=2

1

2

2

4n
2n =

∞∑
n=2

1

2n
=

1

2
< ∞.

Beals, page 34 #3: Let ε > 0 be given. By Theorem 2 on page 33, there is a continuous,
compactly supported function g such that ‖g − f‖1 < ε/4. Note that in fact ‖ga − fa‖1 =
‖g − f‖1 < ε/4 for all a ∈ R.

Let M > 0 be chosen so that g ≡ 0 outside [−M, M ]. Because g has compact support, it
is uniformly continuous. So I can choose δ > 0 so that |x−y| < δ implies that |g(x)−g(y)| <
ε/8M . I can, of course, assume that δ < M , too. Therefore, if |a| < δ, it follows that ga ≡ 0
outside [−2M, 2M ] and

‖f − fa‖1 ≤ ‖f − g‖1 + ‖g − ga‖1 + ‖fa − ga‖1

<
ε

4
+

∫ 2M

−2M

(g(x)− g(x− a)) +
ε

4

<
ε

2
+

∫ 2M

−2M

ε

8M
= ε.

This proves that lima→0 ‖f − fa‖1 = 0. �


