Solutions to Homework 2

Rudin, page 239/6: Since f is a rational function whose denominator vanishes only at
the origin, it is clear that the partial derivatives of f exist and are continuous everywhere
except (z,y) = (0,0). Now at the origin, we have
. f(h,0) = £(0,0) . h-0-0 .0
1/(0,0) = lim h W0 el
A similar computation shows that Dy f(0,0) = 0.
However, if we consider the sequence of points p, = (1/n,1/n), then

fim f(p) = T 27 = 220 £(0,0) = f(1m p,)

im f(p,) = lim = — = £(0,0) = f(lim p,).
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So f is not continuous at (0,0). O

Rudin, page 239/7: Let p = (x1,...,2,),q¢ = (y1,...,Yn) € E be any two points. For
k=1,....,nlet pr = (x1,..., Tk, Yrt1, - - -, Yn) (in particular p, = p), and set pp := 0. Then
for 1 < k < n, the points p; and pi_; differ only in the kth coordinate. Hence, by the
one-variable mean value theorem, there exists ¢ between x, and y; such that

|f(px) = f(Pe—1)| = [Dif(cx)(@e — yr)| < Cllzw — il ,
where C' > 0 is an upper bound for D, f,... D, f on E. Hence
0 = F@] <3 1) = Floe-n)l < CY ok —yal < Cnllp -l
k=1 k=1

The main thing is that the constant C'n has nothing to do with p or q.
Now let p € E be any point and {p,} C E be any sequence convergin to p. Then

0< lim [|f(p.) = f(p)I| < C lim [|p, — pl| = 0.

In other words lim,, . f(p,) = f(p), which shows that f is continuous at p. Since p was
arbitrary, we conclude that f is continuous on E. 0

Rudin, page 239/8: Since f is differentiable at x, all partial derivatives D fy,...Df,
exist at z and Df(z) = (Dfi(x),...,Df,(x)). And if f has a local maximum at the point
x = (x1,...,T,), then for any 1 < k < n, the one-variable function

gk(t) = f(xla SR 7xk—17t7xk+17 s al‘n)

has a local maximum at ¢t = zj. In particular g} (zx) = 0. But g (zx) is just Dy f(z). Hence
Df(x)=(0,...,0). O



Rudin, page 239/9: Fix any point p € E. Let

K={zeE: f(x)=f(p}

I will show that K = E, which implies of course that f is constant. Now p € K, so K # (.
Moreover, f is continuous because it is differentiable, so K = f~1(f(p)) is closed (i.e. the
inverse image of a closed set by a continuous function is closed). In particular, £ — K is
open. If I can show that K is also open, then

E=KU(K - E)

will express E as a disjoint union of two open sets. But E is connected by hypothesis, so it
will follow that K — EF = and therefore £ = K.

So to summarize, it’s enough to show that K is open. Let z € K be any point. Because
E itself is open, we can choose r > 0 such that N,(r) C E. Let y € N,(r) be any other
point and

h:[0,1] - R
be given by h(t) = f(tx + (1 — t)y). Then h(1) = f(z) = f(p) and h(0) = f(y). Moreover,

as the composition of two differentiable functions h itself is differentiable, with

W(t)=Df(tr +(1—t)y)- %(tfﬁ (1-t)y)=0-(z-y) =0

for all t € [0,1]. It follows (from one variable calculus) that h is constant. In particular
f(y) = h(1) = h(0) = f(p). And y € N,(x) was arbitrary, so we conclude that N,(z) C K.
As x was arbitrary, too, it follows that K is open. O

Rudin, page 239/14:
a) For (z,y) # (0,0), a quick computation shows that

—22%y

xt + 322y?
(22 + y2)%

le(Q:?y) = (1'2 +y2)2 )

D2f<l’, y) =

Taking D;(f(z,y)), for example, we note that both 2% and z?y? are smaller than
(=, y)||*. Hence

oy < Al
S TP

for all (z,y) € R*—(0,0). Similarly, |Dof| < 2 on R*—(0,0). Finally, for (z,y) = (0,0)
one computes

h—0
D1f(0,0):}1g%¥:1

and, in the same fashion, D, f(0,0) = 0.



b) Let us write u = (s,t). Then

hu) — f(0
D00 = i LW =1O
3.3/(12:2 1 1242 3
_ hmhs/(hs —i—ht): s 7
h—0 h s? 4 2

which shows that D, f(0,0) exists for any u # 0.

d) Were f actually differentiable at (0,0), Dy, f would be linear in u. But from the formula
computed in part b), we see that

1
D0,1)f(0,0) + D(1,0)f(0,0) =0+ 1 # 5= D.1)£(0,0).



