
Solutions to Homework 2

Rudin, page 239/6: Since f is a rational function whose denominator vanishes only at
the origin, it is clear that the partial derivatives of f exist and are continuous everywhere
except (x, y) = (0, 0). Now at the origin, we have

D1f(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h · 0− 0

h2 + 0
== lim

h→0

0

h2
= 0.

A similar computation shows that D2f(0, 0) = 0.
However, if we consider the sequence of points pn = (1/n, 1/n), then

lim
n→∞

f(pn) = lim
n→∞

1/n2

2/n2
=

1

2
6= 0 = f(0, 0) = f( lim

n→∞
pn).

So f is not continuous at (0, 0). �

Rudin, page 239/7: Let p = (x1, . . . , xn), q = (y1, . . . , yn) ∈ E be any two points. For
k = 1, . . . , n let pk = (x1, . . . , xk, yk+1, . . . , yn) (in particular pn = p), and set p0 := 0. Then
for 1 ≤ k ≤ n, the points pk and pk−1 differ only in the kth coordinate. Hence, by the
one-variable mean value theorem, there exists ck between xk and yk such that

|f(pk)− f(pk−1)| = |Dkf(ck)(xk − yk)| ≤ C ‖xk − yk‖ ,

where C > 0 is an upper bound for D1f, . . . Dnf on E. Hence

|f(p)− f(q)| ≤
n∑

k=1

|f(pk)− f(pk−1)| ≤ C
n∑

k=1

|xk − yk| ≤ Cn ‖p− q‖ .

The main thing is that the constant Cn has nothing to do with p or q.
Now let p ∈ E be any point and {pn} ⊂ E be any sequence convergin to p. Then

0 ≤ lim
n→∞

‖f(pn)− f(p)‖ ≤ C lim
n→∞

‖pn − p‖ = 0.

In other words limn→∞ f(pn) = f(p), which shows that f is continuous at p. Since p was
arbitrary, we conclude that f is continuous on E. �

Rudin, page 239/8: Since f is differentiable at x, all partial derivatives Df1, . . . Dfn

exist at x and Df(x) = (Df1(x), . . . , Dfn(x)). And if f has a local maximum at the point
x = (x1, . . . , xn), then for any 1 ≤ k ≤ n, the one-variable function

gk(t) := f(x1, . . . , xk−1, t, xk+1, . . . , xn)

has a local maximum at t = xk. In particular g′k(xk) = 0. But g′k(xk) is just Dkf(x). Hence
Df(x) = (0, . . . , 0). �



Rudin, page 239/9: Fix any point p ∈ E. Let

K = {x ∈ E : f(x) = f(p)}.

I will show that K = E, which implies of course that f is constant. Now p ∈ K, so K 6= ∅.
Moreover, f is continuous because it is differentiable, so K = f−1(f(p)) is closed (i.e. the
inverse image of a closed set by a continuous function is closed). In particular, E − K is
open. If I can show that K is also open, then

E = K ∪ (K − E)

will express E as a disjoint union of two open sets. But E is connected by hypothesis, so it
will follow that K − E = and therefore E = K.

So to summarize, it’s enough to show that K is open. Let x ∈ K be any point. Because
E itself is open, we can choose r > 0 such that Nx(r) ⊂ E. Let y ∈ Nx(r) be any other
point and

h : [0, 1] → R

be given by h(t) = f(tx + (1 − t)y). Then h(1) = f(x) = f(p) and h(0) = f(y). Moreover,
as the composition of two differentiable functions h itself is differentiable, with

h′(t) = Df(tx + (1− t)y) · d

dt
(tx + (1− t)y) = 0 · (x− y) = 0

for all t ∈ [0, 1]. It follows (from one variable calculus) that h is constant. In particular
f(y) = h(1) = h(0) = f(p). And y ∈ Nr(x) was arbitrary, so we conclude that Nr(x) ⊂ K.
As x was arbitrary, too, it follows that K is open. �

Rudin, page 239/14:

a) For (x, y) 6= (0, 0), a quick computation shows that

D1f(x, y) =
x4 + 3x2y2

(x2 + y2)2
, D2f(x, y) =

−2x2y

(x2 + y2)2
.

Taking D1(f(x, y)), for example, we note that both x4 and x2y2 are smaller than
‖(x, y)‖2. Hence

|D1f(x, y)| ≤ 4 ‖(x, y)‖2

‖(x, y)‖2 = 4

for all (x, y) ∈ R2−(0, 0). Similarly, |D2f | ≤ 2 on R2−(0, 0). Finally, for (x, y) = (0, 0)
one computes

D1f(0, 0) = lim
h→0

(h− 0)

h
= 1

and, in the same fashion, D2f(0, 0) = 0.



b) Let us write u = (s, t). Then

Duf(0, 0) = lim
h→0

f(hu)− f(0)

h

= lim
h→0

h3s3/(h2s2 + h2t2)

h
=

s3

s2 + t2
,

which shows that Duf(0, 0) exists for any u 6= 0.

d) Were f actually differentiable at (0, 0), Duf would be linear in u. But from the formula
computed in part b), we see that

D(0,1)f(0, 0) + D(1,0)f(0, 0) = 0 + 1 6= 1

2
= D(1,1)f(0, 0).


