Solutions to Homework 3

Rudin, page 239/9: Fix any point $p \in E$. Let

$$
K=\{x \in E: f(x)=f(p)\}
$$

I will show that $K=E$, which implies of course that f is constant. Now $p \in K$, so $K \neq \emptyset$. Moreover, f is continuous because it is differentiable, so $K=f^{-1}(f(p))$ is closed (i.e. the inverse image of a closed set by a continuous function is closed). In particular, $E-K$ is open. If I can show that K is also open, then

$$
E=K \cup(K-E)
$$

will express E as a disjoint union of two open sets. But E is connected by hypothesis, so it will follow that $K-E=$ and therefore $E=K$.

So to summarize, it's enough to show that K is open. Let $x \in K$ be any point. Because E itself is open, we can choose $r>0$ such that $N_{x}(r) \subset E$. Let $y \in N_{x}(r)$ be any other point and

$$
h:[0,1] \rightarrow \mathbf{R}
$$

be given by $h(t)=f(t x+(1-t) y)$. Then $h(1)=f(x)=f(p)$ and $h(0)=f(y)$. Moreover, as the composition of two differentiable functions h itself is differentiable, with

$$
h^{\prime}(t)=D f(t x+(1-t) y) \cdot \frac{d}{d t}(t x+(1-t) y)=\mathbf{0} \cdot(x-y)=0
$$

for all $t \in[0,1]$. It follows (from one variable calculus) that h is constant. In particular $f(y)=h(1)=h(0)=f(p)$. And $y \in N_{r}(x)$ was arbitrary, so we conclude that $N_{r}(x) \subset K$. As x was arbitrary, too, it follows that K is open.

Rudin, page 239/14:

a) For $(x, y) \neq(0,0)$, a quick computation shows that

$$
D_{1} f(x, y)=\frac{x^{4}+3 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad D_{2} f(x, y)=\frac{-2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Taking $D_{1}(f(x, y))$, for example, we note that both x^{4} and $x^{2} y^{2}$ are smaller than $|(x, y)|^{4}$. Hence

$$
\left|D_{1} f(x, y)\right| \leq \frac{4|(x, y)|^{2}}{|(x, y)|^{2}}=4
$$

for all $(x, y) \in \mathbf{R}^{2}-(0,0)$. Likewise,

$$
\left|D_{2} f(x, y)\right| \leq \frac{2|(x, y)|^{4}}{|(x, y)|^{4}}=2
$$

Finally, for $(x, y)=(0,0)$ one computes

$$
D_{1} f(0,0)=\lim _{h \rightarrow 0} \frac{(h-0)}{h}=1
$$

and, in the same fashion, $D_{2} f(0,0)=0$.
b) Let us write $\mathbf{u}=(s, t)$. Then

$$
\begin{aligned}
D_{\mathbf{u}} f(0,0) & =\lim _{h \rightarrow 0} \frac{f(h \mathbf{u})-f(\mathbf{0})}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3} s^{3} /\left(h^{2} s^{2}+h^{2} t^{2}\right)}{h}=\frac{s^{3}}{s^{2}+t^{2}}=s^{3},
\end{aligned}
$$

since \mathbf{u} is a unit vector. This shows that $D_{\mathbf{u}} f(0,0)$ exists and, moreover, since $|s| \leq$ $|\mathbf{u}| \leq 1$, we have $\left|D_{\mathbf{u}} f(0,0)\right| \leq 1$.
d) Were f actually differentiable at $(0,0), D_{\mathbf{u}} f$ would be linear in \mathbf{u}. But from the formula computed in part b), we see that

$$
D_{(0,1)} f(0,0)+D_{(1,0)} f(0,0)=0+1 \neq \frac{1}{2}=D_{(1,1)} f(0,0)
$$

Rudin, page 239/16: From the definition of derivative, we have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h+2 h^{2} \sin (1 / h)-0}{h}=1+\lim _{h \rightarrow 0} 2 h \sin (1 / h)=1
$$

since $|2 h \sin (1 / h)| \leq 2|h| \rightarrow 0$ as $h \rightarrow 0$. In particular, $f^{\prime}(0)$ is invertible (i.e. non-zero).
Moreover, for $t \neq 0$, we have

$$
f^{\prime}(t)=1+4 t \sin (1 / t)-2 \cos (1 / t) .
$$

Hence $\left|f^{\prime}(t)\right| \leq 1+4|t|+2<7$ for $t \in(-1,1)$. So f^{\prime} is bounded on $(-1,1)$.
Now suppose that f is actually injective on some neighborhood $I=(-\epsilon, \epsilon)$ of 0 . Then because f is continuous, it follows that f is actually strictly monotone - say for the moment that f is strictly increasing. Then at any point $x \in I$, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \geq 0
$$

because $h>0$ implies that $x+h>x$ which implies in turn that $f(x+h)>f(x)$.
But in fact f^{\prime} is not non-negative on I : at any point $x=1 / 2 n \pi$ we have $f^{\prime}(x)=$ $1+4 \cdot(1 / 2 n \pi) \cdot 0-2 \cdot 1=-1$. It follows that f cannot be strictly increasing on I.

So it must be that f is strictly decreasing on I. As before we conclude that $f^{\prime}(x) \leq 0$ for every $x \in I$. This contradicts the fact that $f^{\prime}(0)=1$, though. So f is not strictly decreasing, therefore not monotone, and therefore not injective on I. Too bad.

Rudin, page 239/17:

a) The range is all \mathbf{R}^{2} except $(0,0)$. Given $(s, t) \in \mathbf{R}^{2}$, just let $x=\frac{1}{2} \log \left(s^{2}+t^{2}\right)$ and choose y so that $\cos y=e^{-x} s$ and $\sin y=e^{-x} t$. This can be done since $\left.\left(e^{-x} s\right)^{2}+\left(e^{-x} t\right)^{2}\right)=1$.
b) The Jacobian of f is

$$
\operatorname{det}\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)=e^{2 x}\left(\cos ^{2} y+\sin ^{2} y\right)=e^{2 x} \neq 0
$$

for any $(x, y) \in \mathbf{R}^{2}$. So f is locally invertible by the inverse function theorem. However, f is not globally invertible since it's not injective: $f(x, y+2 n \pi)=f(x, y)$ for every $n \in \mathbf{N}$.
c)

$$
g(s, t)=\left(\frac{1}{2} \log \left(s^{2}+t^{2}\right), \tan ^{-1}(t / s)\right)
$$

(choosing $\tan ^{-1}$ to have range $(-\pi / 2, \pi / 2)$). Then

$$
g^{\prime}(s, t)=\left(\begin{array}{cc}
\frac{s}{s^{2}+t^{2}} & \frac{t}{s^{2}+t^{2}} \\
\frac{-t}{s^{2}+t^{2}} & \frac{s}{s^{2}+t^{2}}
\end{array}\right) .
$$

So

$$
g^{\prime}(f(x, y))=\left(\begin{array}{cc}
e^{-x} \cos y & e^{-x} \sin y \\
-e^{-x} \sin y & e^{-x} \cos y
\end{array}\right)=f^{\prime}(x)^{-1}
$$

d) For given y, the set

$$
\{f(x, y): x \in \mathbf{R}\}=\left\{e^{x}(\cos y, \sin y): x \in \mathbf{R}\right\}
$$

consists of all positive multiples of the fixed vector $(\cos y, \sin y)$. That is, the image of a horizontal line is a ray beginning at $(0,0)$ (but not including this point).
For given x, the set

$$
\{f(x, y): y \in \mathbf{R}\}=\left\{e^{x}(\cos y, \sin y): y \in \mathbf{R}\right\}
$$

consists of all points at distance e^{x} from $(0,0)$. That is, the image of a vertical line is a circle centered at the origin.

Supplementary problem 1: We have

$$
f^{\prime}(x, y)=\left(\begin{array}{cc}
\cos x & \sin y \\
e^{x} & e^{y}
\end{array}\right)
$$

which clearly varies continuously with (x, y). So f is a C^{1} function on all of \mathbf{R}^{2}.

- We check

$$
\operatorname{det} f^{\prime}(0,0)=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=1
$$

In particular $f^{\prime}(0,0)$ is invertible, and the inverse function theorem implies that f is locally invertible at $(0,0)$. The inverse function has linear approximation at $(-1,2)$ given by

$$
\begin{aligned}
f^{-1}(-1,2)+\left(f^{-1}\right)^{\prime}(-1,2)\binom{x+1}{y-2} & =\binom{0}{0}+f^{\prime}(0,0)^{-1}\binom{x+1}{y-2} \\
& =\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{x+1}{y-2} \\
& =\binom{x+1}{y-x-3}
\end{aligned}
$$

- Let $\left(x_{0}, y_{0}\right)=(0,0)$ be a first guess at the desired point (x, y), and let us use Newton's method (and Mathematica!)

$$
\left(x_{n+1}, y_{n+1}\right)=\left(x_{n}, y_{n}\right)-f^{\prime}\left(x_{n}, y_{n}\right)^{-1}\left(f\left(x_{n}, y_{n}\right)-(-1.02,1.97)\right)
$$

to improve our guesses til they settle down to three unchanging decimal places.
Thus,

$$
\begin{aligned}
\binom{x_{1}}{y_{1}} & =\binom{0}{0}-\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\binom{-1}{2}-\binom{-1.02}{1.97}\right) \\
& =-\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{.02}{.03}=\binom{-.02}{-.01}
\end{aligned}
$$

And again

$$
\begin{aligned}
\binom{x_{2}}{y_{2}} & =\binom{-.02}{-.01}-\left(\begin{array}{cc}
.9998 & -.0100 \\
.9802 & .9900
\end{array}\right)^{-1}\left(\binom{-1.01995}{1.970255}-\binom{-1.02}{1.97}\right) \\
& =\binom{-.0200533}{-.0101982}
\end{aligned}
$$

A further iteration of Newton's method shows that $\left(x_{3}, y_{3}\right)$ is exactly the same as $\left(x_{2}, y_{2}\right)$ to the number of digits shown above, so $\left(x_{2}, y_{2}\right)$ ought to be approximate (x, y) accurately to at least 5 (non-zero) digits.

