
Solutions to Homework 3

Rudin, page 239/9: Fix any point p ∈ E. Let

K = {x ∈ E : f(x) = f(p)}.

I will show that K = E, which implies of course that f is constant. Now p ∈ K, so K 6= ∅.
Moreover, f is continuous because it is differentiable, so K = f−1(f(p)) is closed (i.e. the
inverse image of a closed set by a continuous function is closed). In particular, E − K is
open. If I can show that K is also open, then

E = K ∪ (K − E)

will express E as a disjoint union of two open sets. But E is connected by hypothesis, so it
will follow that K − E = and therefore E = K.

So to summarize, it’s enough to show that K is open. Let x ∈ K be any point. Because
E itself is open, we can choose r > 0 such that Nx(r) ⊂ E. Let y ∈ Nx(r) be any other
point and

h : [0, 1] → R

be given by h(t) = f(tx + (1− t)y). Then h(1) = f(x) = f(p) and h(0) = f(y). Moreover,
as the composition of two differentiable functions h itself is differentiable, with

h′(t) = Df(tx + (1− t)y) · d

dt
(tx + (1− t)y) = 0 · (x− y) = 0

for all t ∈ [0, 1]. It follows (from one variable calculus) that h is constant. In particular
f(y) = h(1) = h(0) = f(p). And y ∈ Nr(x) was arbitrary, so we conclude that Nr(x) ⊂ K.
As x was arbitrary, too, it follows that K is open. �

Rudin, page 239/14:

a) For (x, y) 6= (0, 0), a quick computation shows that

D1f(x, y) =
x4 + 3x2y2

(x2 + y2)2
, D2f(x, y) =

−2x3y

(x2 + y2)2
.

Taking D1(f(x, y)), for example, we note that both x4 and x2y2 are smaller than
|(x, y)|4. Hence

|D1f(x, y)| ≤ 4|(x, y)|2

|(x, y)|2
= 4

for all (x, y) ∈ R2 − (0, 0). Likewise,

|D2f(x, y)| ≤ 2|(x, y)|4

|(x, y)|4
= 2.



Finally, for (x, y) = (0, 0) one computes

D1f(0, 0) = lim
h→0

(h− 0)

h
= 1

and, in the same fashion, D2f(0, 0) = 0.

b) Let us write u = (s, t). Then

Duf(0, 0) = lim
h→0

f(hu)− f(0)

h

= lim
h→0

h3s3/(h2s2 + h2t2)

h
=

s3

s2 + t2
= s3,

since u is a unit vector. This shows that Duf(0, 0) exists and, moreover, since |s| ≤
|u| ≤ 1, we have |Duf(0, 0)| ≤ 1.

d) Were f actually differentiable at (0, 0), Duf would be linear in u. But from the formula
computed in part b), we see that

D(0,1)f(0, 0) + D(1,0)f(0, 0) = 0 + 1 6= 1

2
= D(1,1)f(0, 0).

Rudin, page 239/16: From the definition of derivative, we have

f ′(0) = lim
h→0

h + 2h2 sin(1/h)− 0

h
= 1 + lim

h→0
2h sin(1/h) = 1

since |2h sin(1/h)| ≤ 2|h| → 0 as h → 0. In particular, f ′(0) is invertible (i.e. non-zero).
Moreover, for t 6= 0, we have

f ′(t) = 1 + 4t sin(1/t)− 2 cos(1/t).

Hence |f ′(t)| ≤ 1 + 4|t|+ 2 < 7 for t ∈ (−1, 1). So f ′ is bounded on (−1, 1).
Now suppose that f is actually injective on some neighborhood I = (−ε, ε) of 0. Then

because f is continuous, it follows that f is actually strictly monotone—say for the moment
that f is strictly increasing. Then at any point x ∈ I, we have

f ′(x) = lim
h→0+

f(x + h)− f(x)

h
≥ 0

because h > 0 implies that x + h > x which implies in turn that f(x + h) > f(x).
But in fact f ′ is not non-negative on I: at any point x = 1/2nπ we have f ′(x) =

1 + 4 · (1/2nπ) · 0− 2 · 1 = −1. It follows that f cannot be strictly increasing on I.
So it must be that f is strictly decreasing on I. As before we conclude that f ′(x) ≤ 0 for

every x ∈ I. This contradicts the fact that f ′(0) = 1, though. So f is not strictly decreasing,
therefore not monotone, and therefore not injective on I. Too bad. �

Rudin, page 239/17:



a) The range is all R2 except (0, 0). Given (s, t) ∈ R2, just let x = 1
2
log(s2 + t2) and choose

y so that cos y = e−xs and sin y = e−xt. This can be done since (e−xs)2 + (e−xt)2) = 1.

b) The Jacobian of f is

det

(
ex cos y −ex sin y
ex sin y ex cos y

)
= e2x(cos2 y + sin2 y) = e2x 6= 0

for any (x, y) ∈ R2. So f is locally invertible by the inverse function theorem. However,
f is not globally invertible since it’s not injective: f(x, y + 2nπ) = f(x, y) for every
n ∈ N.

c)

g(s, t) = (
1

2
log(s2 + t2), tan−1(t/s)),

(choosing tan−1 to have range (−π/2, π/2)). Then

g′(s, t) =

(
s

s2+t2
t

s2+t2
−t

s2+t2
s

s2+t2

)
.

So

g′(f(x, y)) =

(
e−x cos y e−x sin y
−e−x sin y e−x cos y

)
= f ′(x)−1.

d) For given y, the set

{f(x, y) : x ∈ R} = {ex(cos y, sin y) : x ∈ R}

consists of all positive multiples of the fixed vector (cos y, sin y). That is, the image of
a horizontal line is a ray beginning at (0, 0) (but not including this point).

For given x, the set

{f(x, y) : y ∈ R} = {ex(cos y, sin y) : y ∈ R}

consists of all points at distance ex from (0, 0). That is, the image of a vertical line is
a circle centered at the origin.

Supplementary problem 1: We have

f ′(x, y) =

(
cos x sin y
ex ey

)
which clearly varies continuously with (x, y). So f is a C1 function on all of R2.

• We check

det f ′(0, 0) = det

(
1 0
1 1

)
= 1.



In particular f ′(0, 0) is invertible, and the inverse function theorem implies that f is
locally invertible at (0, 0). The inverse function has linear approximation at (−1, 2)
given by

f−1(−1, 2) + (f−1)′(−1, 2)

(
x + 1
y − 2

)
=

(
0
0

)
+ f ′(0, 0)−1

(
x + 1
y − 2

)
=

(
1 0
−1 1

) (
x + 1
y − 2

)
=

(
x + 1

y − x− 3

)
• Let (x0, y0) = (0, 0) be a first guess at the desired point (x, y), and let us use Newton’s

method (and Mathematica!)

(xn+1, yn+1) = (xn, yn)− f ′(xn, yn)−1(f(xn, yn)− (−1.02, 1.97))

to improve our guesses til they settle down to three unchanging decimal places.

Thus, (
x1

y1

)
=

(
0
0

)
−

(
1 0
1 1

)−1 ((
−1
2

)
−

(
−1.02
1.97

))
= −

(
1 0
−1 1

) (
.02
.03

)
=

(
−.02
−.01

)
And again(

x2

y2

)
=

(
−.02
−.01

)
−

(
.9998 −.0100
.9802 .9900

)−1 ((
−1.01995
1.970255

)
−

(
−1.02
1.97

))
=

(
−.0200533
−.0101982

)
A further iteration of Newton’s method shows that (x3, y3) is exactly the same as
(x2, y2) to the number of digits shown above, so (x2, y2) ought to be approximate (x, y)
accurately to at least 5 (non-zero) digits.


