Solutions to Homework 4

Rudin, page 239/15:
a) We have (z* +¢%)? — daty? = (z* — y?)? > 0 for all (z,y) € R

To see that f is continuous, it’s enough to check continuity at (0, 0):
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since 2 — 0 whereas the magnitude of the other factor is bounded above by 1. Since
f(0,0) = 0 by definition, this shows that f is continuous at (0, 0).

b) A computation shows that
go(t) = 1* — 2t3(cos® fsin 0) — t*h(t)

where
ht) = 4 cos® 0 sin.2 z
(t2 cos*  — sin” 0)
is defined and C* even at ¢t = 0 (when 6 # 2nm, we have sinf # 0 and this is clear;
when 6 = 2n7 the numerator vanishes altogether and h(t) = 0). Thus

gy(t) = 2t —6t*(cos® Osinf) — t*(4h(t) + th'(t))
gy(t) = 2—12t(cos®Osinf) — t*(12h(t) + Sth'(t) + t*h"(t))
It follows that gj(0) = 0, g5 (0) = 2. Thus gy(t) has a strict local minimum at ¢ = 0.

However, it doesn’t follow that f has a local minimum at (0,0). In fact,

Fz,2?) = 22 + 2t — 22* — 4$10_2_ 442 4
r,x)=x"+zx x —<2x4)2—x 4 xt = —a",

so that e.g. {(1/nm,1/n?)} is a sequence of points converging to (0,0) such that
f(1/n,1/n*) < 0= f(0,0) for every n € N.

Rudin, page 239/21b: We'll need the derivative:
f'(z,y) = (62° — 62, 6y° + 6y) = 6(x(zr — 1), y(y + 1))

For functions f : R*> — R, the implicit function theorem allows us to solve f(z,y) = 0
locally for x in terms of y provided the partial derivative of f with respect to x does not
vanish—i.e. provided = # 0, 1. Let us find out where on the zero level set of f this happens:

0 = f(0,y)=24"+3y°"=y=0,-3/2.
0 = fLy)=-1+2"+3°=>y=-1,1/2



So by the implicit function theorem, we can solve locally for x in terms of y except near the
points (0,0), (0, —3/2),(1,—1),(1,1/2).

Now if the goal is to solve for y in terms of x, then the implicit function theorem allows us
to do so at any point on the zero level set where the partial derivative of f with respect to y
vanishes. The problem points occur when y = 0 or y = —1, and 223 — 322 + 2y% + 3y%. More
specifically we can solve for y in terms of x except at (0,3/2),(0,0), (1, —1),(—=1/2,—1).

Rudin, page 239/23: The linear approximation of f(z,y1,y2) about the point (0,1, —1) is
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One way to restate the implicit function theorem is to say that you can locally solve f =
0 for some of the variables in terms of the others if you can do the same for the linear
approximation. So that’s we do here—we want to solve f(z,y1,y2) = 0 for z in terms of y;
and ys, so we replace f by L and get

TH+1yY—1=0=2=1—1y,,

where the right side is the linear approximation of the implicit function x = ¢(y1,y2). In
particular,
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Supplementary problem 1: Since we’ll need it in all parts of the problem, let us first

note that
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f(a:,y,z,w)—(_l 2y 0 1)
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Since the leftmost 2 x 2 submatrix of this matrix is invertible (its determinant is 3),
the implicit function theorem guarantees us neighborhoods U 3 (1,1), V' 3 (0,0) and
a C! function g : V' — U such that

e In particular,

{(z,y,z,w) e VxU: f(z,y,z,w) = (0,0)} = {(z,y,z,w) € VxU: (x,y) = g(z,w)}.

That is, we can solve f(xz,y,z,w) = (0,0) locally near (1,1,0,0) for z and y in terms
of z and w by setting (z,y) = g(z,w).

e The obvious initial guess for a solution (z,y) of f(z,y,.1,—.2) = (0,0) is (xo,yo) =
(1,1). So let us improve this guess by replacing f by its linear approximation about



(1,1,.1,—.2) setting it equal to zero and solving for x and y while (z,w) is fixed at

(.1,—.2): ie
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which implies that (x1,y1) = (1,1.1). Note that this actually does improve on our
starting guess: we had f(zo,yo,.1, —.2) = (.1, —.2) whereas f(z1,91,.1,—.2) = (0,.01).

e To get an even better guess (x9,1s), I repeat the above, using the linear approximation
of f about (z1,y1,.1,—.2).
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which implies that (zq,y2) = (.9970588...,1.0941176...). Plugging this guess into f

gives
f(x2,y2,.1,—.2) = (8.7 x 107%,3.5 x 107°).

Not bad, if I do say so.

Supplementary problem 2: The first conclusion of the implicit function theorem tells
us that f(z,y) = f(a,b) for (z,y) in a neighborhood W of (a, b) if and only if z = g(y). In
particular, f(a,b) = f(a,b), so it must be that a = g(b).

Given then that ¢ is O, its linear approximation at b has the form

Ly(y) = g(0) +4'(b)(y —b) = a+g'(b)(y — b)



where we compute ¢'(b) using the Chain Rule as follows. Let H : V' — R"™ (V. C R™ is
the neighborhood of b specified in the theorem) be the function H(y) = (g(y),y). Then we
have

foH(y) = f(9(y),y) = f(a,b)
for all y € V. So by the Chain Rule,

f'(H(y)) - H'(y) =0
on V—in particular at y = 0. Now recall that
f/ = (szaDyf)

where D, f : R" — R" and D, f : R™ — R" are the portions of f’ corresponding to partial
derivatives with respect to the x variables and y variables, respectively. Moreover,

wm= ("4,

where ¢'(y) : R™ — R" and id : R™ — R™. Plugging these things back in gives

0= (0.0, D, 110 () = (Duftat) Dystan)( 1)) = Dstang 4D 0

Solving for ¢'(b), we arrive at

g/(b) = _Dxf(av b)_lDyf(av b)

and
Ly(y) = a — Do f(a,b)™ Dy f(a,b)(y — ).



