
Solutions to Homework 4

Rudin, page 239/15:

a) We have (x4 + y2)2 − 4x4y2 = (x4 − y2)2 ≥ 0 for all (x, y) ∈ R2.

To see that f is continuous, it’s enough to check continuity at (0, 0):

lim
(x,y)→(0,0)

x2 + y2 − 2x2y − 4x6y2

(x4 + y2)2
= 0− lim

(x,y)→(0,0)
x2 4x4y2

(x4 + y2)2
= 0

since x2 → 0 whereas the magnitude of the other factor is bounded above by 1. Since
f(0, 0) = 0 by definition, this shows that f is continuous at (0, 0).

b) A computation shows that

gθ(t) = t2 − 2t3(cos2 θ sin θ)− t4h(t)

where

h(t) =
4 cos6 θ sin2 θ

(t2 cos4 θ − sin2 θ)

is defined and C∞ even at t = 0 (when θ 6= 2nπ, we have sin θ 6= 0 and this is clear;
when θ = 2nπ the numerator vanishes altogether and h(t) ≡ 0). Thus

g′θ(t) = 2t− 6t2(cos2 θ sin θ)− t3(4h(t) + th′(t))

g′′θ (t) = 2− 12t(cos2 θ sin θ)− t2(12h(t) + 8th′(t) + t2h′′(t))

It follows that g′θ(0) = 0, g′′θ (0) = 2. Thus gθ(t) has a strict local minimum at t = 0.

However, it doesn’t follow that f has a local minimum at (0, 0). In fact,

f(x, x2) = x2 + x4 − 2x4 − 4x10

(2x4)2
= x2 − x4 + x2 = −x4,

so that e.g. {(1/n, 1/n2)} is a sequence of points converging to (0, 0) such that
f(1/n, 1/n2) < 0 = f(0, 0) for every n ∈ N.

Rudin, page 239/21b: We’ll need the derivative:

f ′(x, y) = (6x2 − 6x, 6y2 + 6y) = 6(x(x− 1), y(y + 1))

For functions f : R2 → R, the implicit function theorem allows us to solve f(x, y) = 0
locally for x in terms of y provided the partial derivative of f with respect to x does not
vanish—i.e. provided x 6= 0, 1. Let us find out where on the zero level set of f this happens:

0 = f(0, y) = 2y3 + 3y2 ⇒ y = 0,−3/2.

0 = f(1, y) = −1 + 2y3 + 3y2 ⇒ y = −1, 1/2



So by the implicit function theorem, we can solve locally for x in terms of y except near the
points (0, 0), (0,−3/2), (1,−1), (1, 1/2).

Now if the goal is to solve for y in terms of x, then the implicit function theorem allows us
to do so at any point on the zero level set where the partial derivative of f with respect to y
vanishes. The problem points occur when y = 0 or y = −1, and 2x3− 3x2 +2y3 +3y2. More
specifically we can solve for y in terms of x except at (0, 3/2), (0, 0), (1,−1), (−1/2,−1).

Rudin, page 239/23: The linear approximation of f(x, y1, y2) about the point (0, 1,−1) is

L(x, y1, y2) = f(0, 1,−1)+f ′(0, 1,−1)

 x
y1 − 1
y2 + 1

 =

 0
0
0

+
(

1 0 1
)  x

y1 − 1
y2 + 1

 = x+y2−1.

One way to restate the implicit function theorem is to say that you can locally solve f =
0 for some of the variables in terms of the others if you can do the same for the linear
approximation. So that’s we do here—we want to solve f(x, y1, y2) = 0 for x in terms of y1

and y2, so we replace f by L and get

x + y2 − 1 = 0 ⇒ x = 1− y2,

where the right side is the linear approximation of the implicit function x = g(y1, y2). In
particular,

∂g

∂y1

(1,−1) = 0,
∂g

∂y2

(1,−1) = −1.

Supplementary problem 1: Since we’ll need it in all parts of the problem, let us first
note that

f ′(x, y, z, w) =

(
2x −1 1 0
−1 2y 0 1

)
.

• In particular,

f ′(1, 1, 0, 0) =

(
2 −1 1 0
−1 2 0 1

)
.

Since the leftmost 2 × 2 submatrix of this matrix is invertible (its determinant is 3),
the implicit function theorem guarantees us neighborhoods U 3 (1, 1), V 3 (0, 0) and
a C1 function g : V → U such that

{(x, y, z, w) ∈ V ×U : f(x, y, z, w) = (0, 0)} = {(x, y, z, w) ∈ V ×U : (x, y) = g(z, w)}.

That is, we can solve f(x, y, z, w) = (0, 0) locally near (1, 1, 0, 0) for x and y in terms
of z and w by setting (x, y) = g(z, w).

• The obvious initial guess for a solution (x, y) of f(x, y, .1,−.2) = (0, 0) is (x0, y0) =
(1, 1). So let us improve this guess by replacing f by its linear approximation about



(1, 1, .1,−.2) setting it equal to zero and solving for x and y while (z, w) is fixed at
(.1,−.2): i.e.

(
0
0

)
= f(1, 1, .1,−.2) + f ′(1, 1, .1,−.2)


x1 − 1
y1 − 1

0
0



=

(
.1
−.2

)
+

(
2 −1 1 0
−1 2 0 1

) 
x1 − 1
y1 − 1

0
0


=

(
2x1 − y1 − .9
2y1 − x1 − 1.2

)
which implies that (x1, y1) = (1, 1.1). Note that this actually does improve on our
starting guess: we had f(x0, y0, .1,−.2) = (.1,−.2) whereas f(x1, y1, .1,−.2) = (0, .01).

• To get an even better guess (x2, y2), I repeat the above, using the linear approximation
of f about (x1, y1, .1,−.2).

(
0
0

)
= f(1, 1.1, .1,−.2) + f ′(1, 1.1, .1,−.2)


x2 − 1

y2 − 1.1
0
0



=

(
0

.01

)
+

(
2 −1 1 0
−1 2.2 0 1

) 
x2 − 1

y2 − 1.1
0
0


=

(
2x2 − y2 − .9

2.2y2 − x2 − 1.41

)
which implies that (x2, y2) = (.9970588 . . . , 1.0941176 . . .). Plugging this guess into f
gives

f(x2, y2, .1,−.2) ≈ (8.7× 10−6, 3.5× 10−5).

Not bad, if I do say so.

Supplementary problem 2: The first conclusion of the implicit function theorem tells
us that f(x, y) = f(a, b) for (x, y) in a neighborhood W of (a, b) if and only if x = g(y). In
particular, f(a, b) = f(a, b), so it must be that a = g(b).

Given then that g is C1, its linear approximation at b has the form

Lg(y) = g(b) + g′(b)(y − b) = a + g′(b)(y − b)



where we compute g′(b) using the Chain Rule as follows. Let H : V → Rn+m (V ⊂ Rm is
the neighborhood of b specified in the theorem) be the function H(y) = (g(y), y). Then we
have

f ◦H(y) = f(g(y), y) = f(a, b)

for all y ∈ V . So by the Chain Rule,

f ′(H(y)) ·H ′(y) = 0

on V —in particular at y = b. Now recall that

f ′ = (Dxf, Dyf)

where Dxf : Rn → Rn and Dyf : Rm → Rn are the portions of f ′ corresponding to partial
derivatives with respect to the x variables and y variables, respectively. Moreover,

H ′(y) =

(
g′(y)
id

)
.

where g′(y) : Rm → Rn and id : Rm → Rm. Plugging these things back in gives

0 = (Dxf(H(b)), Dyf(H(b)))·
(

g′(b)
id

)
= (Dxf(a, b), Dyf(a, b))·

(
g′(b)
id

)
= Dxf(a, b)g′(b)+Dyf(a, b).

Solving for g′(b), we arrive at

g′(b) = −Dxf(a, b)−1Dyf(a, b)

and
Lg(y) = a−Dxf(a, b)−1Dyf(a, b)(y − b).

�


