Solutions to Homework 4

Rudin, page 239/15:

a) We have $\left(x^{4}+y^{2}\right)^{2}-4 x^{4} y^{2}=\left(x^{4}-y^{2}\right)^{2} \geq 0$ for all $(x, y) \in \mathbf{R}^{2}$.

To see that f is continuous, it's enough to check continuity at $(0,0)$:

$$
\lim _{(x, y) \rightarrow(0,0)} x^{2}+y^{2}-2 x^{2} y-\frac{4 x^{6} y^{2}}{\left(x^{4}+y^{2}\right)^{2}}=0-\lim _{(x, y) \rightarrow(0,0)} x^{2} \frac{4 x^{4} y^{2}}{\left(x^{4}+y^{2}\right)^{2}}=0
$$

since $x^{2} \rightarrow 0$ whereas the magnitude of the other factor is bounded above by 1 . Since $f(0,0)=0$ by definition, this shows that f is continuous at $(0,0)$.
b) A computation shows that

$$
g_{\theta}(t)=t^{2}-2 t^{3}\left(\cos ^{2} \theta \sin \theta\right)-t^{4} h(t)
$$

where

$$
h(t)=\frac{4 \cos ^{6} \theta \sin ^{2} \theta}{\left(t^{2} \cos ^{4} \theta-\sin ^{2} \theta\right)}
$$

is defined and C^{∞} even at $t=0$ (when $\theta \neq 2 n \pi$, we have $\sin \theta \neq 0$ and this is clear; when $\theta=2 n \pi$ the numerator vanishes altogether and $h(t) \equiv 0)$. Thus

$$
\begin{aligned}
& g_{\theta}^{\prime}(t)=2 t-6 t^{2}\left(\cos ^{2} \theta \sin \theta\right)-t^{3}\left(4 h(t)+t h^{\prime}(t)\right) \\
& g_{\theta}^{\prime \prime}(t)=2-12 t\left(\cos ^{2} \theta \sin \theta\right)-t^{2}\left(12 h(t)+8 t h^{\prime}(t)+t^{2} h^{\prime \prime}(t)\right)
\end{aligned}
$$

It follows that $g_{\theta}^{\prime}(0)=0, g_{\theta}^{\prime \prime}(0)=2$. Thus $g_{\theta}(t)$ has a strict local minimum at $t=0$.
However, it doesn't follow that f has a local minimum at $(0,0)$. In fact,

$$
f\left(x, x^{2}\right)=x^{2}+x^{4}-2 x^{4}-\frac{4 x^{10}}{\left(2 x^{4}\right)^{2}}=x^{2}-x^{4}+x^{2}=-x^{4}
$$

so that e.g. $\left\{\left(1 / n, 1 / n^{2}\right)\right\}$ is a sequence of points converging to $(0,0)$ such that $f\left(1 / n, 1 / n^{2}\right)<0=f(0,0)$ for every $n \in \mathbf{N}$.

Rudin, page 239/21b: We'll need the derivative:

$$
f^{\prime}(x, y)=\left(6 x^{2}-6 x, 6 y^{2}+6 y\right)=6(x(x-1), y(y+1))
$$

For functions $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, the implicit function theorem allows us to solve $f(x, y)=0$ locally for x in terms of y provided the partial derivative of f with respect to x does not vanish-i.e. provided $x \neq 0,1$. Let us find out where on the zero level set of f this happens:

$$
\begin{aligned}
& 0=f(0, y)=2 y^{3}+3 y^{2} \Rightarrow y=0,-3 / 2 \\
& 0=f(1, y)=-1+2 y^{3}+3 y^{2} \Rightarrow y=-1,1 / 2
\end{aligned}
$$

So by the implicit function theorem, we can solve locally for x in terms of y except near the points $(0,0),(0,-3 / 2),(1,-1),(1,1 / 2)$.

Now if the goal is to solve for y in terms of x, then the implicit function theorem allows us to do so at any point on the zero level set where the partial derivative of f with respect to y vanishes. The problem points occur when $y=0$ or $y=-1$, and $2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}$. More specifically we can solve for y in terms of x except at $(0,3 / 2),(0,0),(1,-1),(-1 / 2,-1)$.

Rudin, page 239/23: The linear approximation of $f\left(x, y_{1}, y_{2}\right)$ about the point $(0,1,-1)$ is $L\left(x, y_{1}, y_{2}\right)=f(0,1,-1)+f^{\prime}(0,1,-1)\left(\begin{array}{c}x \\ y_{1}-1 \\ y_{2}+1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ y_{1}-1 \\ y_{2}+1\end{array}\right)=x+y_{2}-1$.

One way to restate the implicit function theorem is to say that you can locally solve $f=$ 0 for some of the variables in terms of the others if you can do the same for the linear approximation. So that's we do here - we want to solve $f\left(x, y_{1}, y_{2}\right)=0$ for x in terms of y_{1} and y_{2}, so we replace f by L and get

$$
x+y_{2}-1=0 \Rightarrow x=1-y_{2},
$$

where the right side is the linear approximation of the implicit function $x=g\left(y_{1}, y_{2}\right)$. In particular,

$$
\frac{\partial g}{\partial y_{1}}(1,-1)=0, \quad \frac{\partial g}{\partial y_{2}}(1,-1)=-1
$$

Supplementary problem 1: Since we'll need it in all parts of the problem, let us first note that

$$
f^{\prime}(x, y, z, w)=\left(\begin{array}{cccc}
2 x & -1 & 1 & 0 \\
-1 & 2 y & 0 & 1
\end{array}\right)
$$

- In particular,

$$
f^{\prime}(1,1,0,0)=\left(\begin{array}{cccc}
2 & -1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right)
$$

Since the leftmost 2×2 submatrix of this matrix is invertible (its determinant is 3), the implicit function theorem guarantees us neighborhoods $U \ni(1,1), V \ni(0,0)$ and a C^{1} function $g: V \rightarrow U$ such that
$\{(x, y, z, w) \in V \times U: f(x, y, z, w)=(0,0)\}=\{(x, y, z, w) \in V \times U:(x, y)=g(z, w)\}$.
That is, we can solve $f(x, y, z, w)=(0,0)$ locally near $(1,1,0,0)$ for x and y in terms of z and w by setting $(x, y)=g(z, w)$.

- The obvious initial guess for a solution (x, y) of $f(x, y, .1,-.2)=(0,0)$ is $\left(x_{0}, y_{0}\right)=$ $(1,1)$. So let us improve this guess by replacing f by its linear approximation about
$(1,1, .1,-2)$ setting it equal to zero and solving for x and y while (z, w) is fixed at (.1, -.2): i.e.

$$
\begin{aligned}
\binom{0}{0} & =f(1,1, .1,-.2)+f^{\prime}(1,1, .1,-.2)\left(\begin{array}{c}
x_{1}-1 \\
y_{1}-1 \\
0 \\
0
\end{array}\right) \\
& =\binom{.1}{-.2}+\left(\begin{array}{cccc}
2 & -1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1}-1 \\
y_{1}-1 \\
0 \\
0
\end{array}\right) \\
& =\binom{2 x_{1}-y_{1}-.9}{2 y_{1}-x_{1}-1.2}
\end{aligned}
$$

which implies that $\left(x_{1}, y_{1}\right)=(1,1.1)$. Note that this actually does improve on our starting guess: we had $f\left(x_{0}, y_{0}, .1,-.2\right)=(.1,-.2)$ whereas $f\left(x_{1}, y_{1}, .1,-.2\right)=(0, .01)$.

- To get an even better guess $\left(x_{2}, y_{2}\right)$, I repeat the above, using the linear approximation of f about $\left(x_{1}, y_{1}, .1,-.2\right)$.

$$
\begin{aligned}
\binom{0}{0} & =f(1,1.1, .1,-.2)+f^{\prime}(1,1.1, .1,-.2)\left(\begin{array}{c}
x_{2}-1 \\
y_{2}-1.1 \\
0 \\
0
\end{array}\right) \\
& =\binom{0}{.01}+\left(\begin{array}{cccc}
2 & -1 & 1 & 0 \\
-1 & 2.2 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{2}-1 \\
y_{2}-1.1 \\
0 \\
0
\end{array}\right) \\
& =\binom{2 x_{2}-y_{2}-.9}{2.2 y_{2}-x_{2}-1.41}
\end{aligned}
$$

which implies that $\left(x_{2}, y_{2}\right)=(.9970588 \ldots, 1.0941176 \ldots)$. Plugging this guess into f gives

$$
f\left(x_{2}, y_{2}, .1,-.2\right) \approx\left(8.7 \times 10^{-6}, 3.5 \times 10^{-5}\right)
$$

Not bad, if I do say so.

Supplementary problem 2: The first conclusion of the implicit function theorem tells us that $f(x, y)=f(a, b)$ for (x, y) in a neighborhood W of (a, b) if and only if $x=g(y)$. In particular, $f(a, b)=f(a, b)$, so it must be that $a=g(b)$.

Given then that g is C^{1}, its linear approximation at b has the form

$$
L_{g}(y)=g(b)+g^{\prime}(b)(y-b)=a+g^{\prime}(b)(y-b)
$$

where we compute $g^{\prime}(b)$ using the Chain Rule as follows. Let $H: V \rightarrow \mathbf{R}^{n+m}\left(V \subset \mathbf{R}^{m}\right.$ is the neighborhood of b specified in the theorem) be the function $H(y)=(g(y), y)$. Then we have

$$
f \circ H(y)=f(g(y), y)=f(a, b)
$$

for all $y \in V$. So by the Chain Rule,

$$
f^{\prime}(H(y)) \cdot H^{\prime}(y)=0
$$

on V-in particular at $y=b$. Now recall that

$$
f^{\prime}=\left(D_{x} f, D_{y} f\right)
$$

where $D_{x} f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ and $D_{y} f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ are the portions of f^{\prime} corresponding to partial derivatives with respect to the x variables and y variables, respectively. Moreover,

$$
H^{\prime}(y)=\binom{g^{\prime}(y)}{\mathrm{id}}
$$

where $g^{\prime}(y): \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ and id : $\mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$. Plugging these things back in gives $0=\left(D_{x} f(H(b)), D_{y} f(H(b))\right) \cdot\binom{g^{\prime}(b)}{$ id }$=\left(D_{x} f(a, b), D_{y} f(a, b)\right) \cdot\binom{g^{\prime}(b)}{$ id }$=D_{x} f(a, b) g^{\prime}(b)+D_{y} f(a, b)$.

Solving for $g^{\prime}(b)$, we arrive at

$$
g^{\prime}(b)=-D_{x} f(a, b)^{-1} D_{y} f(a, b)
$$

and

$$
L_{g}(y)=a-D_{x} f(a, b)^{-1} D_{y} f(a, b)(y-b)
$$

