Solutions to Homework 5

Supplementary problem 1: Since C is defined implicitly as the 0 -level set of a function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$, we will have that C is a codimension one (i.e. dimension 2) C^{1} submanifold of \mathbf{R}^{3} at all points where f^{\prime} has maximal rank 1. Specifically,

$$
f^{\prime}(x, y, z)=(2 x,-2 y,-2 z)
$$

has rank one unless all three entries vanish-i.e. unless $(x, y, z)=(0,0,0)$ So C is a two dimensional submanifold of \mathbf{R}^{3} except at the origin (which, incidentally, actually does lie in $C)$.

The picture you draw should show a circular cone generated by rotating the line $x=y$ about the x axis.

Supplementary problem 2: The function $h: \mathbf{R} \rightarrow \mathbf{R}^{2}$ is clearly C^{1} and parametrizes the set C. Therefore C is a dimension one (i.e. codimension 1) submanifold of \mathbf{R}^{2} except at points where h^{\prime} fails to have (maximal) rank one. Specificly,

$$
h^{\prime}(t)=\left(2 t, 3 t^{2}\right)
$$

which has rank equal to one unless both entries vanish-i.e. unless $t=0$. Hence C is a dimension one submanifold at all points other than $h(0)=(0,0)$.

The tangent space to C at $h(t)$ is the image of \mathbf{R} under the linear transformation $h^{\prime}(t)$. In particular, since ' 1 ' is a basis for \mathbf{R}, the vector $h^{\prime}(t) \cdot 1=\left(2 t, 3 t^{2}\right)$ will be a basic for the tangent space to C at $h(t)$.

Supplementary problem 3: The set C is just the $(1,0)$ level set of the function f : $\mathbf{R}^{2} \rightarrow \mathbf{R}^{4}$. Therefore C will be a submanifold of \mathbf{R}^{4} with both dimension and codimension equal to two except at points where

$$
f^{\prime}(x, y, z, w)=\left(\begin{array}{cccc}
2 x & -2 y & -w & -z \\
w & z & y & x
\end{array}\right)
$$

has rank less than two. Having rank less than two means that all 2×2 submatrices of f^{\prime} have zero determinant. There are six of these, and their determinants are

$$
2 x z+2 y w, \quad 2 x y+w^{2}, \quad 2 x^{2}+w z, \quad-2 y^{2}+w z, \quad-2 x y+z^{2}, \quad-x w+y z .
$$

If all six vanish, then comparing the second and fourth expression shows that $w^{2}=-z^{2}$, which can only happen if $z=w=0$; and the third and fifth combine to imply that $x^{2}=-y^{2}$, so that again $x=y=0$. Hence the only trouble occurs at $(0,0,0,0)$ which is not actually in C. So C is a submanifold of \mathbf{R}^{4} at all points.

Now the tangent space to C at $(1,1,0,0)$ is just the $(1,0)$ level set of the linear approximation of f at that point. That is, we seek all vectors (a, b, c, d) satisfying

$$
\binom{1}{0}=\binom{1}{0}+f^{\prime}(1,1,0,0)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

From this it is clear that we're just after the nullspace of

$$
f^{\prime}(1,1,0,0)=\left(\begin{array}{cccc}
2 & -2 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

After dividing the matrix by two, it's in reduced row echelon form with free variables b and d. The nullspace is therefore the two dimensional subspace of \mathbf{R}^{4} generated by the vectors $(1,1,0,0)$ and $(0,0,-1,1)$ obtained by setting one free variable equal to one and the other equal to 0 .

Supplementary problem 4: We have

$$
f^{\prime}(x, y)=\left(\begin{array}{cc}
3 x^{2}-4 x y & -2 x^{2}+1 \\
-4 x & 3 y^{2}
\end{array}\right)
$$

With a first guess of $\left(x_{0}, y_{0}\right)=(1,1)$, I find a second guess $\left(x_{1}, y_{1}\right)$ by linearly approximating f about (1,1) and setting the result equal to (1.1, -. 8).

$$
\binom{.1}{-.8}=\binom{0}{-1}+\left(\begin{array}{cc}
-1 & -1 \\
-4 & 3
\end{array}\right)\binom{x_{1}-1}{y_{1}-1}
$$

which implies that

$$
\binom{x_{1}}{y_{1}}=\binom{1}{1}+\left(\begin{array}{cc}
-1 & -1 \\
-4 & 3
\end{array}\right)^{-1}\binom{.1}{.2}=\binom{.92857}{.97143}
$$

To find a better guess it is necessary to repeat this process using the linear approximation of f near $\left(x_{1}, y_{1}\right)$ instead of $\left(x_{0}, y_{0}\right)$. Rather than type up the details, I have made available the mathematica worksheet (web viewable version available, too) that I used to do this computation. See the course webpage for the link.

