
Solutions to Homework 6

Rudin, page 165/20:
Proof. Let P (x) = cnx

n + . . . + c1x + c0 be a polynomial. Then∫ 1

0

f(x)P (x) dx = cn

∫ 1

0

f(x)xn dx + . . . c1

∫ 1

0

f(x)x dx + c0

∫ 1

0

f(x)x0 dx = 0

by hypothesis. By Weierstrass’ Approximation Theorem, there is a sequence {Pn} of polyno-
mials converging uniformly to f on [0, 1]. Moreover, f is continuous and therefore bounded
on [0, 1], as is each of the polynomials Pn. Therefore (see problem 2 from this section), f ·Pn

converges uniformly to f · f = f 2 on [0, 1]. By Theorem 7.16, I conclude that

0 = lim
n→∞

∫ 1

0

f(x)Pn(x) dx =

∫ 1

0

lim
n→∞

f(x)Pn(x) dx =

∫ 1

0

[f(x)]2 dx.

Now f 2 is a non-negative function that vanishes exactly where f does. So if f(x) > 0 for
some x ∈ [0, 1], it follows from continuity of f that for some δ > 0, |t− x| < δ implies that
f(t) > f(x)/2. Therefore, ∫ 1

0

[f(x)]2 dx ≥ δ[f(x)]2/4 > 0.

This is impossible, so f ≡ 0 on [0, 1]. �

Rudin, page 165/21: The identify function eiθ 7→ eiθ belongs to A, vanishes nowhere and
is injective. Hence A is nowhere vanishing and separates points. Nevertheless, I claim that
the function f(eiθ) = 1/eiθ = e−iθ is not in the uniform closure of A.
Proof. Note first that ∫ 2π

0

f(eiθ)eiθ dθ = 2π.

Now suppose in order to obtain a contradiction that f is in the uniform closure of A. Then
for any ε > 0 we could find an element g ∈ A such that

|g(eiθ)− f(eiθ)| < ε

for every eiθ.∣∣∣∣∫ 2π

0

g(eiθ)eiθ dθ −
∫ 2π

0

f(eiθ)eiθ dθ

∣∣∣∣ ≤ ∫ 2π

0

|g(eiθ)− f(eiθ)||eiθ| dθ ≤ 2πε < 2π.

provided we choose ε < 1. In particular,∫ 2π

0

g(eiθ)eiθ 6= 0.



On the other hand g(θ) =
∑N

n=0 cne
inθ, so∫ 2π

0

g(eiθ) dθ =
N∑

n=0

cn

∫ 2π

0

ein+1θ dθ =
N+1∑
k=1

ck−1

(∫ 2π

0

cos(kθ) dθ + i

∫ 2π

0

sin(kθ) dθ

)
= 0.

This contradicts the above and proves that f is not in the uniform closure of A. �

Rudin, page 165/22:
Proof. Let ε > 0 be given. By Exercise 12 from Chapter 6, there is a continuous function
h : [a, b] → R such that ‖h− f‖2 <

√
ε/4. In other words,∫ b

a

|h(x)− f(x)|2 dx < ε/4.

By Weiestrass’ Approximation Theorem, there is a polynomial P such that

|P (x)− h(x)| <
√

ε

4(b− a)

for all x ∈ [a, b]. Thus ∫ b

a

|P (x)− h(x)|2 dx < (b− a)
ε

4(b− a)
= ε/4.

Finally,

|P (x)− f(x)|2 ≤ (|P (x)− h(x)|+ |h(x)− f(x)|)2 ≤ 2(|P (x)− h(x)|2 + |h(x)− f(x)|2),

so ∫ b

a

|P (x)− f(x)|2 dx < 2(ε/4 + ε/4) = ε.

If I now choose a sequence εn > 0 tending to 0 and let Pn be the corresponding polynomials,
then it follows that

lim
n→∞

∫ b

a

|Pn(x)− f(x)|2 dx = 0

�

Rudin, page 165/23:
Proof. I proceed by induction to show that for all n ≥ 0 and |x| < 1 that

0 ≤ Pn(x) ≤ Pn+1(x) ≤ |x|

and

|x| − Pn(x) ≤ |x|
(

1− |x|
2

)n

.



For the moment, let me suppose that these inequalities are proven. By finding roots of the
derivative, it is easily shown that the function h : [0, 1] → R given by h(t) = t(1− t/2)n will
achieve its maximum at t = 0, 1 or 2/(n + 1) (i.e. at endpoints or critical points). We have
h(0) = 0, h(1) = 1/2n, and h(2/n + 1) < 2/(n + 1) (since h(x) < x when x ∈ (0, 1]). In any
case, h(t) < 2/(n + 1) for all t. Thus

||x| − Pn(x)| = |x| − Pn(x) ≤ h(x) < 2/(n + 1)

for all x ∈ [−1, 1], and it follows that Pn converges uniformly to |x|.
Now I return to the proof of the inequalities asserted earlier. When n = 0, we have

Pn(x) = 0 and Pn+1(x) = x2/2, and all the inequalities are easily verified directly. So now
I assume that the inequalities have been verified for n = k, and I will prove that they hold
when n = k + 1. First of all, we use 0 ≤ Pk(x) ≤ |x| to estimate

Pk+1(x) = Pk(x) +
x2 − P 2

k (x)

2
≥ Pk(x) +

x2 − |x|2

2
= Pk(x).

Secondly,

|x| − Pk+1(x) = [|x| − Pk(x)]

[
1− |x|+ Pk(x)

2

]
≥ [|x| − Pk(x)]

[
1− |x|+ |x|

2

]
≥ 0

for |x| ≤ 1. So Pk+1(x) ≤ |x|. Finally, in the other direction

|x| − Pk+1(x) = [|x| − Pk(x)]

[
1− |x|+ Pk(x)

2

]
≤ [|x| − Pk(x)]

[
1− |x|

2

]
≤ |x|

(
1− |x|

2

)k [
1− |x|

2

]
= |x|

(
1− |x|

2

)k+1

,

where the second inequality comes from the induction hypothesis. This completes the in-
duction step and the proof. �


