Solutions to Homework 6

Rudin, page 165/20:
Proof. Let P(z) = ¢ 2" + ... 4+ c1x + ¢ be a polynomial. Then

/Olf(l’)P(SC)da::cn/olf(a:)x”dx—l—...01/Olf(x)a:dx—i—co/olf(g;)xodx:O

by hypothesis. By Weierstrass’ Approximation Theorem, there is a sequence { P, } of polyno-
mials converging uniformly to f on [0, 1]. Moreover, f is continuous and therefore bounded
on [0, 1], as is each of the polynomials P,. Therefore (see problem 2 from this section), f- P,
converges uniformly to f - f = f? on [0,1]. By Theorem 7.16, I conclude that

= lim f(x)Pn(x)dx:/o lim f(x)Pn(x)dx:/O [f(z)]? dx.

n—~oo 0 n—oo

Now f? is a non-negative function that vanishes exactly where f does. So if f(z) > 0 for
some z € [0, 1], it follows from continuity of f that for some § > 0, |t — x| < ¢ implies that
f(t) > f(x)/2. Therefore,

/0 [f(x)]* dz > d[f(x)]?/4 > 0.

This is impossible, so f =0 on [0, 1]. O

Rudin, page 165/21: The identify function ¢ ~ e belongs to A, vanishes nowhere and
is injective. Hence A is nowhere vanishing and separates points. Nevertheless, I claim that
the function f(e) = 1/e? = =% is not in the uniform closure of A.

Proof. Note first that )

f(e®)e dg = 2.
0

Now suppose in order to obtain a contradiction that f is in the uniform closure of A. Then
for any € > 0 we could find an element g € A such that

lg(e”) = f(e?)] < €
for every e®.
27 ) ]
/ g<€z€)616 do —
0

provided we choose € < 1. In particular,

[ ot #o

ot 2m
f(eie)eie d@‘ < / |g(ei9) — f(ew)Hew] df < 2me < 2.
0

0



On the other hand g(0) = 320 c,e™, so

2m ] N 2m ] N+1 27 2w
/ g(e”)do = Z cn/ et dh = Z Ch1 (/ cos(k0) do + 7,/ sin(k0) dﬁ) =
0 n=0 0 k=1 0 0
This contradicts the above and proves that f is not in the uniform closure of A. O

Rudin, page 165/22:
Proof. Let € > 0 be given. By Exercise 12 from Chapter 6, there is a continuous function
h:la,b] — R such that ||h — f||, < y/€/4. In other words,

/ |h(x z)*dr < €/4.

By Weiestrass” Approximation Theorem, there is a polynomial P such that

for all € [a,b]. Thus

/ 1P@) ~ ho)*de < (b= a) g = e/
Finally,
|P(z) — f(z)* < (IP(z) — h(z)| + |h(x) — f(z)])* < 2(]P(x) = h(z)]* + |h(z) — f(z)]),

SO

/ |P(x z)Pdr < 2(e/4+ €/4) = .

If I now choose a sequence €, > 0 tending to 0 and let P, be the corresponding polynomials,

then it follows that ,

lim \P() f(@)|*dz =0

n—od

Rudin, page 165/23:
Proof. I proceed by induction to show that for all n > 0 and |z| < 1 that

0 < Pu(r) < Poya () < |

ol - o) < ol (1- 1)

and



For the moment, let me suppose that these inequalities are proven. By finding roots of the
derivative, it is easily shown that the function h : [0,1] — R given by A(t) = t(1 —¢/2)" will
achieve its maximum at t = 0,1 or 2/(n + 1) (i.e. at endpoints or critical points). We have
h(0) =0, h(1) =1/2" and h(2/n+ 1) < 2/(n+ 1) (since h(x) < z when z € (0, 1]). In any
case, h(t) < 2/(n+ 1) for all £. Thus

||| = Pu(2)] = || = Pu(z) < h(z) < 2/(n +1)

for all z € [—1,1], and it follows that P, converges uniformly to |z|.

Now I return to the proof of the inequalities asserted earlier. When n = 0, we have
P.(x) = 0 and P,;1(x) = ?/2, and all the inequalities are easily verified directly. So now
I assume that the inequalities have been verified for n = k, and I will prove that they hold
when n = k + 1. First of all, we use 0 < Py(x) < |z| to estimate

Pii1(z) = Pi(z) + w > Pi(z) + w = Py(x).
Secondly,

for |x| < 1. So Piy1(x) < |z|. Finally, in the other direction

2] = Puni(z) = [la] - Pula) [1 _ W]
< [l - o] [1- B

A
(-5

where the second inequality comes from the induction hypothesis. This completes the in-
duction step and the proof. O



