## Solutions to Homework 6

## Rudin, page 165/20:

Proof. Let $P(x)=c_{n} x^{n}+\ldots+c_{1} x+c_{0}$ be a polynomial. Then

$$
\int_{0}^{1} f(x) P(x) d x=c_{n} \int_{0}^{1} f(x) x^{n} d x+\ldots c_{1} \int_{0}^{1} f(x) x d x+c_{0} \int_{0}^{1} f(x) x^{0} d x=0
$$

by hypothesis. By Weierstrass' Approximation Theorem, there is a sequence $\left\{P_{n}\right\}$ of polynomials converging uniformly to $f$ on $[0,1]$. Moreover, $f$ is continuous and therefore bounded on $[0,1]$, as is each of the polynomials $P_{n}$. Therefore (see problem 2 from this section), $f \cdot P_{n}$ converges uniformly to $f \cdot f=f^{2}$ on $[0,1]$. By Theorem 7.16, I conclude that

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) P_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f(x) P_{n}(x) d x=\int_{0}^{1}[f(x)]^{2} d x
$$

Now $f^{2}$ is a non-negative function that vanishes exactly where $f$ does. So if $f(x)>0$ for some $x \in[0,1]$, it follows from continuity of $f$ that for some $\delta>0,|t-x|<\delta$ implies that $f(t)>f(x) / 2$. Therefore,

$$
\int_{0}^{1}[f(x)]^{2} d x \geq \delta[f(x)]^{2} / 4>0
$$

This is impossible, so $f \equiv 0$ on $[0,1]$.

Rudin, page 165/21: The identify function $e^{i \theta} \mapsto e^{i \theta}$ belongs to $\mathcal{A}$, vanishes nowhere and is injective. Hence $\mathcal{A}$ is nowhere vanishing and separates points. Nevertheless, I claim that the function $f\left(e^{i \theta}\right)=1 / e^{i \theta}=e^{-i \theta}$ is not in the uniform closure of $\mathcal{A}$.
Proof. Note first that

$$
\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i \theta} d \theta=2 \pi
$$

Now suppose in order to obtain a contradiction that $f$ is in the uniform closure of $\mathcal{A}$. Then for any $\epsilon>0$ we could find an element $g \in \mathcal{A}$ such that

$$
\left|g\left(e^{i \theta}\right)-f\left(e^{i \theta}\right)\right|<\epsilon
$$

for every $e^{i \theta}$.

$$
\left|\int_{0}^{2 \pi} g\left(e^{i \theta}\right) e^{i \theta} d \theta-\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i \theta} d \theta\right| \leq \int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right)-f\left(e^{i \theta}\right) \| e^{i \theta}\right| d \theta \leq 2 \pi \epsilon<2 \pi
$$

provided we choose $\epsilon<1$. In particular,

$$
\int_{0}^{2 \pi} g\left(e^{i \theta}\right) e^{i \theta} \neq 0
$$

On the other hand $g(\theta)=\sum_{n=0}^{N} c_{n} e^{i n \theta}$, so

$$
\int_{0}^{2 \pi} g\left(e^{i \theta}\right) d \theta=\sum_{n=0}^{N} c_{n} \int_{0}^{2 \pi} e^{i n+1 \theta} d \theta=\sum_{k=1}^{N+1} c_{k-1}\left(\int_{0}^{2 \pi} \cos (k \theta) d \theta+i \int_{0}^{2 \pi} \sin (k \theta) d \theta\right)=0
$$

This contradicts the above and proves that $f$ is not in the uniform closure of $\mathcal{A}$.

## Rudin, page 165/22:

Proof. Let $\epsilon>0$ be given. By Exercise 12 from Chapter 6, there is a continuous function $h:[a, b] \rightarrow \mathbf{R}$ such that $\|h-f\|_{2}<\sqrt{\epsilon / 4}$. In other words,

$$
\int_{a}^{b}|h(x)-f(x)|^{2} d x<\epsilon / 4
$$

By Weiestrass' Approximation Theorem, there is a polynomial $P$ such that

$$
|P(x)-h(x)|<\sqrt{\frac{\epsilon}{4(b-a)}}
$$

for all $x \in[a, b]$. Thus

$$
\int_{a}^{b}|P(x)-h(x)|^{2} d x<(b-a) \frac{\epsilon}{4(b-a)}=\epsilon / 4 .
$$

Finally,

$$
|P(x)-f(x)|^{2} \leq(|P(x)-h(x)|+|h(x)-f(x)|)^{2} \leq 2\left(|P(x)-h(x)|^{2}+|h(x)-f(x)|^{2}\right),
$$

so

$$
\int_{a}^{b}|P(x)-f(x)|^{2} d x<2(\epsilon / 4+\epsilon / 4)=\epsilon
$$

If I now choose a sequence $\epsilon_{n}>0$ tending to 0 and let $P_{n}$ be the corresponding polynomials, then it follows that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|P_{n}(x)-f(x)\right|^{2} d x=0
$$

## Rudin, page 165/23:

Proof. I proceed by induction to show that for all $n \geq 0$ and $|x|<1$ that

$$
0 \leq P_{n}(x) \leq P_{n+1}(x) \leq|x|
$$

and

$$
|x|-P_{n}(x) \leq|x|\left(1-\frac{|x|}{2}\right)^{n}
$$

For the moment, let me suppose that these inequalities are proven. By finding roots of the derivative, it is easily shown that the function $h:[0,1] \rightarrow \mathbf{R}$ given by $h(t)=t(1-t / 2)^{n}$ will achieve its maximum at $t=0,1$ or $2 /(n+1)$ (i.e. at endpoints or critical points). We have $h(0)=0, h(1)=1 / 2^{n}$, and $h(2 / n+1)<2 /(n+1)($ since $h(x)<x$ when $x \in(0,1])$. In any case, $h(t)<2 /(n+1)$ for all $t$. Thus

$$
\left||x|-P_{n}(x)\right|=|x|-P_{n}(x) \leq h(x)<2 /(n+1)
$$

for all $x \in[-1,1]$, and it follows that $P_{n}$ converges uniformly to $|x|$.
Now I return to the proof of the inequalities asserted earlier. When $n=0$, we have $P_{n}(x)=0$ and $P_{n+1}(x)=x^{2} / 2$, and all the inequalities are easily verified directly. So now I assume that the inequalities have been verified for $n=k$, and I will prove that they hold when $n=k+1$. First of all, we use $0 \leq P_{k}(x) \leq|x|$ to estimate

$$
P_{k+1}(x)=P_{k}(x)+\frac{x^{2}-P_{k}^{2}(x)}{2} \geq P_{k}(x)+\frac{x^{2}-|x|^{2}}{2}=P_{k}(x)
$$

Secondly,

$$
|x|-P_{k+1}(x)=\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|+P_{k}(x)}{2}\right] \geq\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|+|x|}{2}\right] \geq 0
$$

for $|x| \leq 1$. So $P_{k+1}(x) \leq|x|$. Finally, in the other direction

$$
\begin{aligned}
|x|-P_{k+1}(x) & =\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|+P_{k}(x)}{2}\right] \\
& \leq\left[|x|-P_{k}(x)\right]\left[1-\frac{|x|}{2}\right] \\
& \leq|x|\left(1-\frac{|x|}{2}\right)^{k}\left[1-\frac{|x|}{2}\right] \\
& =|x|\left(1-\frac{|x|}{2}\right)^{k+1}
\end{aligned}
$$

where the second inequality comes from the induction hypothesis. This completes the induction step and the proof.

