Test 2 for Math 405, Introduction to Combinatorics.

Name:	October 27, 2000
_ ,	0000001 21, 2000

Instructions: The test will be 50 minutes in length.

1. (10 pts) Assume that

$$h_n = 5h_{n-1} - 6h_{n-2}$$

for $n \geq 3$ and that $h_1 = h_2 = 1$. Compute h_n for all integers $n \geq 3$.

2. (10 pts) Assume that

$$h_{n+3} + h_{n+1} + h_n = 0$$

and that $h_1 = 0$, $h_2 = 0$ and $h_3 = 0$. Compute h_n for all integers $n \ge 4$.

3. (10 pts) Let

$$f(x) = \frac{1}{(x-1)(x-2)(x-3)} = \sum_{n=0}^{\infty} s_n x^n$$

be the generating function of a sequence. Find an explicit formula for s_n .

4. (10 pts) Solve explicitly the recurrence relation

$$h_{n+1} = 3h_n + 3^{n+1}, \quad n \ge 1.$$

 $h_1 = 2.$

5. (15 pts) What is the number of ways to place six non-attacking rooks on the following 'pruned chess-board'?

6. (15 pts) Let h_n denote the number of n-digit sequences in which each digit is 0 or 1, no two consecutive 0's being allowed. Note that $h_1 = 2$ and $h_2 = 3$. Find an explicit formula for h_n . (Hint: establish a second order recurrence relation.)

7.	(15 pts) Determine each occur an even	e the number of n number of times.	digit	numbers	with	all	digits	odd,	such	that	1 a	and	3

8. For each n let h_n denote the number of non-negative integral solutions of the equation

$$a + 3b + 5c + d + e = n$$

subject to the conditions:

$$0 \le d \le 2, \qquad 0 \le e \le 4.$$

a) (8 pts) Find the generating function of the sequence h_n .

b) (7 pts) When n = 100 compute explicitly the number of solutions.