Math. 423 Final exam Due by Wednesday, May 10

1. Given the initial value problem $y' = \frac{\cos(t) - 2yt}{1 + t^2}$ with y(0) = 0.

Use MAPLE or any other program to answer the following questions. Write the answers below and attach some documentation, such as a printout.

(a) Use the modified Euler method, first with step size h = 0.05 and then with h = 0.025, to approximate y(1).

(b) Do the same using the standard Runge-Kutta method of order four.

(Continuing problem 1) The actual solution of the initial value problem is

$$y(t) = \frac{\sin(t)}{1 + t^2}.$$

(c) Determine the errors involved in using the modified Euler method with h=0.05 and h=0.025. By what factor does the error improve when the step size is reduced? Is that about what one would expect? Explain.

(d) Answer the same questions for the standard Runge-Kutta method of order four.

- 2. Given the initial value problem y' = -y + t, y(0) = 1.
 - (a) Use the modified Euler method with step size h = 0.2 to compute w_1 .

(b) Use the Adams-Bashforth 2-step method with the w_1 of part (a) and step size h = 0.2 to approximate y(0.4).

Continuing problem 2.

(c) Repeat parts (a) and (b) to approximate y(0.4), but this time using step size h=0.1; i.e., use the modified Euler method to compute w_1 and then use the Adams-Bashforth 2-step method to approximate y(0.4).

Continuing problem 2.

(d) The actual solution of the initial value problem is $y(t) = t - 1 + 2e^{-t}$. Use this information to estimate the error in the approximations of y(0.4) in parts (b) and (c). By what factor did the error improve using h = 0.1 instead of h = 0.2? Was that close to what you expected? Explain.

- 3. Given the initial value problem $y' = e^y$, y(0) = 0.
 - (a) Use the Taylor method of order 4 with h = 0.1 to approximate y(0.2).

(b) The actual solution of the initial value problem is $y(t) = -\ln(1-t)$. If you did part (a) correctly your answer should differ from the actual value by less than 0.0000062. Check that it does.

- 4. Given the initial value problem $y' = y^2 t$, y(0) = 1
- (a) Use the 2-step Adams-Bashforth-Moulton predictor-corrector method to approximate y(0.2) Use a step size of h=0.1, and use the Taylor method of order 2 to find w_1 .

(b) Use the standard 4-step Runge-Kutta method to approximate y(0.2).