1. Let $f(x) = \frac{1}{z^2 + 1}$. Evaluate $\int f(z) dz$ where

(a) (5 points) γ is the circle centered at i, radius 1, positively oriented.

(b) (5 points) γ is the circle centered at –i, radius 1, positively oriented.

(c) (5 points) γ is the circle centered at 0, radius $\frac{1}{2}$, positively oriented.

Let $f(z) = \frac{1}{z+1} + \frac{1}{z-2}$. Find the Laurent expansion for f(z), in powers of

z, for

(a) (5 points) |z| < 1

(b) (5 points) 1 < |z| < 2

c) (5 points) |z| > 2

3. (15 points) Let $f_n(z) = \frac{z}{(z-1)^n}$ where n is a positive integer. Expand $f_{n}(z)$ as a power series in z-1, then use residue theory to evaluate $\int_{\gamma} f_n(z) dz$ for each n>0.

(a) State the argument principle in a few words.

(b) (10 points) Use it to determine the number of zeros of $f(z) = z^4 + 3iz^2 + z - 2 + i \quad \text{in the upper half plane}.$

5. (a) (5 points) State Rouché's Theorem.

(b) (10 points) Use it to determine the number of zeros of $f(z) = z^6 - 5z^2 + 10$ in the annulus

$$1 < |z| < 2$$
.

6. (15 points) Evaluate the integral $\int \frac{x^2}{(x^2+1)(x^2+4)} dx$

- 7. Consider the integral $\int \frac{z \, e^{iz} \, dz}{z^4 + 1} \, dz$ where γ is the contour consisting of the portion of the x axis from x = –R to x = R followed by the semicircle z = R $e^{i\theta}$ for θ from 0 to π .
- a. (5 points) Use residue theory to evaluate the contour integral.

b. (10 points) Carefully estimate the absolute value of the integral along the semicircle so that can conclude that as $R \to \infty$, this part of the contour integral approaches 0.

c. (5 points) By considering the real and imaginary parts of the integral along the x- axis we v get 2 real integrals. What are they, and what are their values?

8. (10 points) Find
$$\operatorname{Res}\left(\frac{e^z}{(z+2)^3}; -2\right)$$
.

9. (10 points) Find the four fourth roots of -16.

10. (10 points) Find all the values of $\log (1 + i\sqrt{3})$.

11. (10 points) Find all the values of $(1 + i)^{i}$.