1. Let $f(x)=\frac{1}{z^{2}+1}$. Evaluate $\int_{\gamma} f(z) d z \quad$ where
(a) (5 points) γ is the circle centered at i , radius 1 , positively oriented.
(b) (5 points) γ is the circle centered at -i, radius 1 , positvely oriented.
(c) (5 points) γ is the circle centered at 0 , radius $\frac{1}{2}$, positively oriented.
2. Let $f(z)=\frac{1}{z+1}+\frac{1}{z-2}$. Find the Laurent expansion for $f(z)$, in powers of
z, for
(a) (5 points) $|z|<1$
(b) (5 points) $1<|z|<2$
c) (5 points) $|z|>2$
3. (15 points) Let $f_{n}(z)=\frac{z}{(z-1)^{n}}$ where n is a positive integer. Expand $\mathrm{f}_{\mathrm{n}}(\mathrm{z})$ as a power series in $z-1$, then use residue theory to evaluate $\int_{\gamma} f_{n}(z) d z$ for each $n>0$.
4. (5 Points)
(a) State the argument principle in a few words.
(b) (10 points) Use it to determine the number of zeros of $f(z)=z^{4}+3 i z^{2}+z-2+i$ in the upper half plane.
5. (a) (5 points) State Rouché's Theorem.
(b) (10 points) Use it to determine the number of zeros of $f(z)=z^{6}-5 z^{2}+10$ in the annulus
$1<|z|<2$.
6. (15 points) Evaluate the integral $\int_{-0}^{0} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
7. Consider the integral $\int_{\gamma} \frac{z e^{i z} d z}{z^{4}+1} d z$ where γ is the contour consisting of the portion of the $x-$ axis from $x=-R$ to $x=R$ followed by the semicircle $z=R e^{i \theta}$ for θ from 0 to π.
a. (5 points) Use residue theory to evaluate the contour integral.
b. (10 points) Carefully estimate the absolute value of the integral along the semicircle so tha can conclude that as $\mathrm{R} \rightarrow \infty$, this part of the contour integral approaches 0 .
c. (5 points) By considering the real and imaginary parts of the integral along the x - axis we v get 2 real integrals. What are they, and what are their values?
8. (10 points) Find $\operatorname{Res}\left(\frac{\mathrm{e}^{z}}{(\mathrm{z}+2)^{3}} ;-2\right)$.
9. (10 points) Find the four fourth roots of -16 .
10. (10 points) Find all the values of $\log (1+i \sqrt{3})$.
11. (10 points) Find all the values of $(1+i)^{i}$.
