Student's name:

1. (5 points) Compute
$(2+i)(1-i)$
2. (5 points) Find the number

$$
\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{100}
$$

3. (15 points) Find all third roots of the number $8 i$. Represent them in the standard form $a+b i$.

Student's name: \qquad
4. (10 points) Are the sets described by the following connected? Are they simply connected? Show them on the diagram.
(a) $-1<\operatorname{Re}((1+i) z<1$

(b) $1<|z-1|<2$

Student's name:

5. (20 points) Compute the following:
(a) $\exp \left(\frac{\pi}{2} i\right)$
(b) $\operatorname{Ln} i$
(c) $\sin i$
(d) $\cosh i$

Student's name:

6. (10 points) Prove the identity

$$
\cos 2 z=\cos ^{2} z-\sin ^{2} z
$$

for every complex z.

Student's name:

\qquad
7. (20 points) Compute the line integral

$$
\int_{\gamma}|z| z d z
$$

(a) where γ is the the straight segment from -1 to 1 ,
(b) $\quad \gamma$ is the upper semicircle from -1 to 1 .

Student's name:

8. (15 points) Use Green's theorem to prove that $\int z^{2} d z=0$, for every simple γ closed curve.
