Review for Test No. 1

1. Complex numbers. Conjugates. Arithmetical operations on complex numbers. Absolute value and the triangle inequality. Infinity. Polar form. De Moivre's formula. *n*-th roots of complex numbers.

Examples:

- **1**.1 Calculate the following expressions:
 - (a) $\frac{1+i\tan\alpha}{1-i\tan\alpha}$, α a real number, $(1+i)^9$.
- 1.2 Find all complex numbers z, which are conjugate to their cubes: $z = \overline{z^3}$.
- **1**.3 Calculate $\left(\frac{1-i}{1+i}\right)^{1995}$.
- **1.4** Find all third roots of -2 + 2i

1.5 Use De Moivre's formula to prove that $\tan 6\theta = \frac{6 \tan \theta - 20 \tan^3 \theta + 6 \tan^5 \theta}{1 - 15 \tan \theta + 15 \tan^5 \theta - \tan^6 \theta}$

- 2. Geometry of complex numbers. Lines, circles, the Appolonius circles.
 - 2.1 Find the loci of the equations or inequalities and draw then on a diagram: (a) |z - 2| + |z + 2| = 5, (b) |z - 2| - |z + 2| > 3, (c) $|z| = \operatorname{Re}(z) + 1$ (d) $0 < \operatorname{Re}(iz) < 2$
- Topology of complex numbers. Open and closed sets. Connected sets. Simply connected sets. Limit of a sequence, an limit of a function. Continuity. Infinite series and convergence tests. Power series. Radius of convergence. Hadamard's

formula $R = \frac{1}{\limsup \sqrt[n]{|a_n|}}$. Using other tests to determine the radius of convergence.

Examples:

- 3.1 Which of the following sets are open or closed? Find their boundaries. Are they connected, simply connected? Draw a diagram
 (a) {z | |z 2| |z + 2| = 3}, (b) {z | 0 < |z 2| + |z + 2| ≤ 5},
 - (c) $\{z \mid |z| < 2 |z+1|$

3.2. Which of the following functions has a limit at 0?

$$\frac{\operatorname{Re}(z)}{(a)|z|}$$
, (b) $\frac{z}{|z|}$, (c) $\frac{\operatorname{Re}(z^2)}{|z^2|}$
$$\frac{z\operatorname{Re}(z)}{(d)|z|}$$

3.3 Find the radius of convergence of the series

(a)
$$\sum_{n=0}^{\infty} n^k z^n$$
, where k is a positive integer.
(c) $\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n$,

(b)
$$\sum_{n=0}^{\bullet} n^n z^n$$
,

- 4. The exponential, logarithm and trigonometric functions.
 - **4.1.** Find the real and imaginary parts of: (a) $\cos (2 + i)$, (b) $\sin 2i$, c) $\sinh (e^i)$.
- **5**. Line integrals and Green's theorem.
 - **5.1.** Evaluate the integrals $I = \int_{\gamma} \operatorname{Re}(z) dz$ and $J = \int_{\gamma} \operatorname{Im}(z) dz$ along
 - (a) The semicircle |z| = 1, $0 \le \arg(z) \le \pi$, with initial point z = -1
 - (b) The line segment joining the points z = 0 to the point z = 2 + i.
 - **5.**2 Use Green's theorem to prove that $\int z \, dz = 0$, where γ is the circle |z|=1.

Verify that the identity $\frac{\partial f}{\partial z} + i \frac{\partial f}{\partial y} = 0$ holds also for the function $f(z) = \frac{1}{z}$. Why

then

cannot the prove be used in this case. Note that $\int \frac{1}{z} dz = 2\pi i$