Review for Test No. 1

1. Complex numbers. Conjugates. Arithmetical operations on complex numbers. Absolute value and the triangle inequality. Infinity. Polar form. De Moivre's formula. n-th roots of complex numbers.
Examples:
1.1 Calculate the following expressions:
(a) $\frac{1+i \tan \alpha}{1-i \tan \alpha}, \alpha$ - a real number, $\left.\left.\quad(\mathrm{b})+i\right)^{7}+i\right)^{9}$
1.2 Find all complex numbers z, which are conjugate to their cubes: $z=\overline{z^{3}}$.
1.3 Calculate $\left(\frac{1-i}{1+i}\right)^{1995}$.
1.4 Find all third roots of $-2+2 i$
1.5 Use De Moivre's formula to prove that $\tan 6 \theta=\frac{6 \tan \theta-20 \tan ^{3} \theta+6 \tan ^{5} \theta}{1-15 \tan \theta+15 \tan ^{5} \theta-\tan ^{6} \theta}$
2. Geometry of complex numbers. Lines, circles, the Appolonius circles.
2.1 Find the loci of the equations or inequalities and draw then on a diagram:
(a) $|z-2|+|z+2|=5$,
(b) $|z-2|-|z+2|>3$,
(c) $|z|=\operatorname{Re}(z)+1$
(d) $0<\operatorname{Re}(i z)<2$
3. Topology of complex numbers. Open and closed sets. Connected sets.

Simply connected sets. Limit of a sequence, an limit of a function. Continuity.
Infinite series and convergence tests. Power series. Radius of convergence. Hadamard's formula $R=\frac{1}{\lim \sup \sqrt[n]{\left|a_{n}\right|}}$. Using other tests to determine the radius of convergence.
Examples:
3.1 Which of the following sets are open or closed? Find their boundaries. Are they connected, simply connected? Draw a diagram
(a) $\{z||z-2|-|z+2|=3\}$, (b) $\{z|0<|z-2|+|z+2| \leq 5\}$,
(c) $\{z||z|<2| z+1 \mid$
3.2. Which of the following functions has a limit at 0 ?
(a) $|z| \quad \operatorname{Re}(z)$
(b) $\frac{z}{|z|}$,
(c) $\frac{\operatorname{Re}\left(z^{2}\right)}{\left|z^{2}\right|}$,
$z \operatorname{Re}(z)$
3.3 Find the radius of convergence of the series
(a) $\sum_{n=0}^{\bullet} n^{k} z^{n}$, where k is a positive integer.
(b) $\sum_{n=0}^{\bullet} n^{n} z^{n}$,
(c)) $\sum_{n=0}^{\bullet} \frac{2^{n}}{n!} z^{n}$,
4. The exponential, logarithm and trigonometric functions.
4.1. Find the real and imaginary parts of:
(a) $\cos (2+i)$,
(b) $\sin 2 i$,
c) $\sinh \left(e^{i}\right)$.
5. Line integrals and Green's theorem.
5.1. Evaluate the integrals $I=\int_{\gamma} \operatorname{Re}(z) d z \quad$ and $J=\int_{\gamma} \operatorname{Im}(z) d z \quad$ along
(a) The semicircle $|z|=1,0 \leq \arg (z) \leq \pi$, with initial point $z=-1$
(b) The line segment joining the points $z=0$ to the point $z=2+i$.
5.2 Use Green's theorem to prove that $\int z d z=0$, where γ is the circle $|z|=1$.

Verify that the identity $\frac{\partial f}{\partial z}+i \frac{\partial f}{\partial y}=0$ holds also for the function $f(z)=\frac{1}{z}$. Why then
cannot the prove be used in this case. Note that $\int \frac{1}{z} d z=2 \pi i$

