\magnification=\magstep1 {\bf{\centerline{ Math 431 Problem Set 3}}} \bigskip \parindent=0pt {\bf }\smallskip {\bf 1.} Ex 5.2\smallskip {\bf2.} Ex 7.1\smallskip {\bf 3.} Ex 7.2 \smallskip \smallskip {\bf{4.}} Ex 8.1\bigskip {\bf Numerical Problems}\smallskip {\bf 5.} Ex 8.2 \smallskip {\bf 6.} Ex 8.3 \smallskip {\bf 7.} Ex 8.4\bigskip {\bf Exploration: Irrational numbers and continued fractions} \medskip {\bf 8.} Try to extend the process in Problem Set 2, 11(b) to find the beginnings of infinite simple continued fraction expansions for irrational numbers. For example, $$\pi=3+{1\over{7+{1\over{15+{1\over \ldots}}}}}$$ Calculate more terms in the continued fraction expansion of $\pi$. Calculate the start of the continued fraction expansions for $e, e^2,e^3, \sqrt 2, \sqrt 3, \root 3 \of 2$. Any conjectures?\smallskip \vfil\eject {\bf Exploration: Simultaneous Linear Diophantine Equations}\medskip {\bf 9.} Try to determine if the following systems of simultaneous lienar Diophantine equations have a solution for integers $x$, $y$, $z$. If so, try to find a solution and to describe all solutions of the equations. It may be helpful to consider also the problem of finding solutions to the equations in the real numbers. (a) $$\left\{ \eqalign{4x+6y&=10\cr 6x+9y&=15\cr }\right\}$$ (b) $$\left\{ \eqalign{4x+6y&=10\cr 6x+9y&=20\cr }\right\}$$ (c) $$22x+ 33y+6z=5$$ (d) $$21x+6y+12z=4$$ (e) $$\left\{ \eqalign{2x+3y-5z&=-3\cr 3x+2y+4z&=7\cr 4x-4y-2z&=2}\right\}$$ (f) $$\left\{ \eqalign{2x+3y-5z&=-3\cr 3x+2y+4z&=7\cr}\right\}$$ Can you find a sytematic proceedure for determining all solutions in integers of any such system in any number of variables? %{\bf Ingenuity} \smallskip \bye