\magnification=\magstep1 {\bf{\centerline{ Math 431 Problem Set 4}}} \bigskip \parindent=0pt {\bf }\smallskip {\bf 1.} Ex 9.1 \smallskip {\bf 2.} Ex 9.2\smallskip {\bf 3.} Ex 10.1 \smallskip \smallskip {\bf{4.}} Ex 11.1 \bigskip {\bf 5.} Ex 11.2 \smallskip {\bf 6.} Ex11.3 \smallskip \medskip {\bf 7.} Ex 11.4 \bigskip {\bf Exploration.} \smallskip {\bf 8. Sums of powers modulo a prime.} Let $p$ be an odd prime, $k\geq 1$ and $S=\sum_{j=1}^{p-1}j^k$. Compute the values of $S\pmod p$ for some $p$ and $k$ and try to form a conjecture on the value of $S\pmod p$. Can you prove the conjecture, or part of it? \smallskip {\bf 9. Wilson's theorem for non-primes.} Calculate the value of $(m-1)!\pmod m$ for various composite numbers $m$. Formulate a conjecture on its value and prove your conjecture. {\bf 10.} Find the number's of the solutions of the congruences $x^2-1\equiv 0 $ $\pmod 3$, $\pmod 8$, $\pmod {24}$. Same for $x^2-x-2$. What do you notice. Explain your observations. Explain how to systematically use the lists of solutions of these congruences $\pmod 3$ and $\pmod 8$ to find all solutions $\pmod {24}$.\smallskip {\bf 11.} Find the largest power of $2$ exactly dividing $1000!$. Find a formula for the largest power of a prime $p$ dividing $n!$. Find the prime factorization of $100!$, of ${100\choose 40}={{100!}\over {40!60!}}$.\smallskip {\bf 12.} Calculate $\sum_{d\vert n,d>0} \phi(d)$ for various values of $n$. What do you notice? Can you prove it? {\bf 13. Continued fractions.} Consider a fraction of the form $$q_1+{1\over\displaystyle{q_2+{1\over\displaystyle{q_3+\ldots{+ \displaystyle{1\over q_n}}}}}}$$ in which $q_1$, $q_2$, $\ldots$, $q_n$ are not necessarily integers. For brevity, write such a fraction in the form $[q_1;q_2,\ldots, q_n]$. Set $P_{-1}=0$, $P_0=1$, $P_j=P_{j-1}q_j+P_{j-2}$ and $Q_{-1}=1$, $Q_0=0$, $Q_j=Q_{j-1}q_j+Q_{j-2}$. Show that (a) $[q_1;q_2,\ldots, q_j]=P_j/Q_j$ for $j=1$, $2$, $\ldots$, $n$. (b) $P_{j-1}Q_j-Q_{j-1}P_j=(-1)^{j-1}$ for $1\leq j\leq n$. (c) $P_{j-2}Q_j-Q_{j-2}P_j=(-1)^{j}q_j$ for $2\leq j\leq n$. What does this have to do with magic tables? \smallskip {\bf Ingenuity}\smallskip {\bf 14.} Show that the sum $1+{1\over 2} +{1\over 3}+\ldots +{1\over n}$ is never an integer for $n\geq 2$. \bye