Math 431 Exam III On Approximation of Irrational Numbers

by Pit-Mann Wong

Problem I. Find a simple continued fraction expansion of 1729/625.

Problem II. The simple continue fraction $p / q=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of a rational number is unique if $a_{n}=1$. If $a_{n} \neq 1$ show that $p / q=\left[a_{0}, a_{1}, \ldots, a_{n}-1,1\right]$.

By definition the k-th convergent of a simple continue fraction $p / q=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is given inductively by

$$
C_{k}=\frac{p_{k}}{q_{k}}=\frac{a_{k} p_{k-1}+p_{k-2}}{a_{k} q_{k-1}+q_{k-2}}
$$

with $p / q=C_{n}$.
Proposition 1. Let $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ be a simple continued fraction. Write the k-th convergent $C_{k}=p_{k} / q_{k}$ where p_{k}, q_{k} are relatively prime then $p_{0}=a_{0}, q_{0}=1$ and for $k \geq 1$

$$
\left(\begin{array}{cc}
p_{k} & q_{k} \\
p_{k-1} & q_{k-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
p_{k-1} & q_{k-1} \\
p_{k-2} & q_{k-2}
\end{array}\right)
$$

Moreover, we have

$$
\left\{\begin{array}{l}
p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1} \\
p_{k} q_{k-2}-q_{k} p_{k-2}=(-1)^{k} a_{k}
\end{array}\right.
$$

The preceding proposition may be used to solve the Diophantine equations:

$$
A x-B y= \pm 1
$$

provide that A and B are relatively prime.
Example 2. To solve the equation $257 x-97 y=-1$, first find the ssimple continue fraction expansion of 257/97:

$$
\frac{257}{97}=[2,1,1,1,5,1,4]
$$

and its convergents $2,3,5 / 2,8 / 3,45 / 17,53 / 20,257 / 97$. Applying proposition 1 with $k=6$ yields

$$
257 \cdot 20-97 \cdot 53=(-1)^{6-1}=-1
$$

so $x=20$ and $y=53$ is a solution. If we ant to solve the equation $257 x-97 y=1$ then we have to replace the expansion by (see Problem II):

$$
\frac{257}{97}=[2,1,1,1,5,1,3,1]
$$

with convergents $2,3,5 / 2,8 / 3,45 / 17,53 / 20,204 / 77,257 / 97$. proposition 1 with $k=7$ yields:

$$
257 \cdot 77-97 \cdot 204=(-1)^{7-1}=1
$$

thus $x=77, y=204$ is a solution.
Problem III. Solve the equations (1) $417 \mathrm{x}-172 \mathrm{y}=1,(2) 1163 x-815 y=1$.

Example 3. Let $a / b=\left[a_{0}, a_{1}, \ldots, a_{n}, a_{n}, \ldots, a_{1}, a_{0}\right], a_{i}>0$ for all i. A continue fraction of this form is said to be symmetric. Let $C_{k}=p_{k} / q_{k}$ be the k-th convergent how that $\left\{p_{k}\right\},\left\{q_{k}\right\}$ are increasing sequences and

$$
\left\{\begin{aligned}
p_{n} / p_{n-1} & =\left[a_{n}, \ldots, a_{1}, a_{0}\right] \\
q_{n} / p_{n-1} & =\left[a_{n}, \ldots, a_{1}\right] .
\end{aligned}\right.
$$

Proof. By Proposition 1, $p_{k}=a_{k} p_{k-1}+p_{k-2}$ which implies that p_{k} increases as each term on the right is positive. Moreover, we get

$$
\frac{p_{n}}{p_{n-1}}=a_{n}+\frac{p_{n-2}}{p_{n-1}}
$$

hence the first term of the continue fraction expansion for p_{n} / p_{n-1} is a_{n} with fractional part p_{n-2} / p_{n-1}. The next term of the expansion is obtained from $p_{n-1}=a_{n-1} p_{n-2}+p_{n-3}$, dividing through by p_{n-2} yields

$$
\frac{p_{n-1}}{p_{n-2}}=a_{n-1}+\frac{p_{n-3}}{p_{n-2}}
$$

which shows that the second term of the continue fraction expansion for p_{n} / p_{n-1} is a_{n-1} with fractional part p_{n-3} / p_{n-2}. It is clear that this process may be continued until we arrive at $p_{0}=a_{0}$ with no fractional part. The proof is entirely analogous for q_{k}. QED
Example 4. If the convergents of a simple continue fraction are given by p_{k} / q_{k} then

$$
\left(p_{k}^{2}-q_{k}^{2}\right)\left(p_{k-1}^{2}-q_{k-1}^{2}\right)=\left(p_{k} p_{k-1}-q_{k} q_{k-1}\right)^{2}-1
$$

Proof. Squaring the right hamd side above yields

$$
R H S=p_{k}^{2} p_{k-1}^{2}+q_{k}^{2} q_{k-1}^{2}-2 p_{k} p_{k-1} q_{k} q_{k-1}-1
$$

On the other hand, the left hand side above equals

$$
L H S=p_{k}^{2} p_{k-1}^{2}+q_{k}^{2} q_{k-1}^{2}-p_{k}^{2} q_{k-1}^{2}-q_{k}^{2} p_{k-1}^{2}
$$

By the second part of Proposition 1,

$$
p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}
$$

and squaring yields

$$
p_{k}^{2} q_{k-1}^{2}+q_{k}^{2} p_{k-1}^{2}-2 p_{k} p_{k-1} q_{k} q_{k-1}=1
$$

which implies that $R H S=L H S$. QED
Example 5. Let $a / b=\left[a_{0}, a_{1}, \ldots, a_{n}, a_{n}, \ldots, a_{1}, a_{0}\right]=p_{2 n+1} / q_{2 n+1}, a_{i}>0$ for all i. Show that $p_{2 n+1}=$ $p_{n}^{2}+p_{n-1}^{2}$ and $q_{2 n+1}=p_{n} q_{n}+p_{n-1} q_{n-1}$.
Proof. Let $x=\left[a_{n}, \ldots, a_{1}, a_{0}\right]$ then

$$
\frac{a}{b}=\left[a_{0}, a_{1}, \ldots, a_{n}, x\right]=(n+1)-\text { st convergent of }\left[a_{0}, a_{1}, \ldots, a_{n}, x\right]=\frac{x p_{n}+p_{n-1}}{x q_{n}+q_{n-1}}
$$

By example $3 p_{n} / p_{n-1}=x$ hence the preceding can also be expressed as

$$
\frac{p_{2 n+1}}{q_{2 n+1}}=\frac{a}{b}=\frac{p_{n}^{2}+p_{n-1}^{2}}{p_{n} q_{n}+p_{n-1} q_{n-1}}
$$

QED
Example 6. Let $a / b=\left[a_{0}, a_{1}, \ldots, a_{n}, a_{n}, \ldots, a_{1}, a_{0}\right]$ be a symmetric continue fraction. Show that $p_{2 n}=b$ and $a \mid b^{2}+1$.

Proof. Since there are $2 n+2$ terms in the simple fraction $a / b=C_{2 n+1}=p_{2 n+1} q_{2 n+1}$ hence $p_{2 n+1}=a, q_{2 n+1}=$ b. By Example 3 and the condition that the continue fraction is symeetric we onclude that

$$
\frac{p_{2 n+1}}{p_{2 n}}=\left[a_{0}, a_{1}, \ldots, a_{n}, a_{n}, \ldots, a_{1}, a_{0}\right]=\frac{a}{b}
$$

hence $p_{2 n}=b$. By the second part of Proposition 1,

$$
p_{2 n+1} q_{2 n}-q_{2 n+1} p_{2 n}=(-1)^{2 n+1-1}=1
$$

hence $a q_{2 n}-b^{2}=1$. QED
Problem IV. Let $a / b=\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}, a_{n-1} \ldots, a_{1}, a_{0}\right]$ show that $a \mid b^{2}-1$.

Problem V. Recall that the Fibonacci numbers are defined by the conditions $f_{1}=f_{2}=1$ and $f_{n}=$ $f_{n-1}+f_{n-2}$ for $n \geq 3$. Show that
(a) The simple continue fraction expansion of $f_{n+1} / f_{n}=[1, \ldots, 1]$ (n ones).
(b) What identities can you derive for the Fibonaci sequences from Examples 5, 6 and problem IV?
(c) Conclude that any thre consecutive Fibonacci numbers have no common factor.

Definition 6. A rational number $p / q, p . q$ relatively prime is said to be a good (resp. best) approximation of an irrational number α if

$$
\left|\alpha-\frac{p}{q}\right|<\left|\alpha-\frac{p^{\prime}}{q^{\prime}}\right| \quad\left(\text { resp. }|q \alpha-p|<\left|q^{\prime} \alpha-p^{\prime}\right|\right)
$$

for all rational number p^{\prime} / q^{\prime} with p^{\prime}, q^{\prime} relatively prime and $q^{\prime}<q$.
Proposition 7. If p / q is a best rational approximation of an irrational number α then it is also a good approximation.
Theorem 8. A raional number is a best approximation of an irrational number α if and only if it is a convergent of the simple continuous frction expansion of α.
Example 9. Rational numbers with respective denominators $1,2,3,4,5,6$ approximating $\pi \sim 3.1415927$ are respectively $3 / 1,7 / 2,10 / 3,13 / 4,16 / 5,19 / 6$. The approximation 3 is a best approximation, $7 / 2,10 / 3$ are not good approximations, $13 / 4,16 / 5,19 / 6$ are good approximations but not best. Thus the converse of Proposition 1 is not valid. The simple continuous fraction expansion of π is given by $[3,7,15,1,292,1, \ldots]$. The convergents are given by

$$
\begin{aligned}
& C_{0}=3 \\
& C_{1}=3+\frac{1}{7}=\frac{22}{7} \\
& C_{2}=3+\frac{1}{7+\frac{1}{15}}=\frac{333}{106} \\
& C_{3}=3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}}=\frac{355}{113} \\
& C_{4}=3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}}=\frac{355}{113} \\
& C_{5}=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292}}}}=\frac{111613}{37204}
\end{aligned}
$$

Corollary 10. If a rational number $p / q, p, q$ relatively prime satisfyies

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{2 q^{2}}
$$

then p / q is a convergent of α.
Corollary 11. A number α is irrational if and only if the inequality

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

admits ininitely many rational solutions $p / q, p, q$ relatively prime.
Problem VI. In Example 9 verify that The approximation 3 is a best approximation, $7 / 2,10 / 3$ are not good approximations, $13 / 4,16 / 5,19 / 6$ are good approximations but not best.

